Publications by authors named "Eugenia Mardanova"

In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.

View Article and Find Full Text PDF

The capsid proteins of many viruses are capable of spontaneous self-assembly into virus-like particles (VLPs), which do not contain the viral genome and are therefore not infectious. VLPs are structurally similar to their parent viruses and are therefore effectively recognized by the immune system and can induce strong humoral and cellular immune responses. The structural features of VLPs make them an attractive platform for the development of potential vaccines and diagnostic tools.

View Article and Find Full Text PDF

Plant viruses and virus-like particles (VLPs) are safe for mammals and can be used as a carrier/platform for the presentation of foreign antigens in vaccine development. The aim of this study was to use the coat protein (CP) of Physalis mottle virus (PhMV) as a carrier to display the extracellular domain of the transmembrane protein M2 of influenza A virus (M2e). M2e is a highly conserved antigen, but to induce an effective immune response it must be linked to an adjuvant or carrier VLP.

View Article and Find Full Text PDF

Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum recombinant vaccines based on conserved antigens. The extracellular domain of the transmembrane protein M2 of influenza A virus (M2e) is highly conserved but poorly immunogenic and needs to be fused to an adjuvant protein or carrier virus-like particles (VLPs) to increase immunogenicity and provide protection against infection. In this study, we obtained VLPs based on capsid proteins (CPs) of single-stranded RNA phages Beihai32 and PQ465 bearing the M2e peptides.

View Article and Find Full Text PDF

A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in plants using self-replicating vector based on the potato virus X genome.

View Article and Find Full Text PDF

Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier.

View Article and Find Full Text PDF

The development of recombinant vaccines against SARS-CoV-2 and influenza A is an important task. The combination of the conserved influenza A antigen, the extracellular domain of the transmembrane protein M2 (M2e), and the receptor-binding domain of the SARS-CoV-2 spike glycoprotein (RBD) provides the opportunity to develop a bivalent vaccine against these infections. The fusion of antigens with bacterial flagellin, the ligand for Toll-like receptor 5 and potent mucosal adjuvant, may increase the immunogenicity of the candidate vaccines and enable intranasal immunization.

View Article and Find Full Text PDF

Capsid protein of Hepatitis E virus (HEV) is capable of self-assembly into virus-like particles (VLPs) when expressed in plants. Such VLPs could be used as carriers of antigens for vaccine development. In this study, we obtained VLPs based on truncated coat protein of HEV bearing the M2e peptide of Influenza A virus or receptor-binding domain of SARS-CoV-2 spike glycoprotein (RBD).

View Article and Find Full Text PDF

The development of recombinant vaccines against SARS-CoV-2 is required to eliminate the COVID-19 pandemic. We reported the expression of a recombinant protein Flg-RBD comprising receptor binding domain of SARS-CoV-2 spike glycoprotein (RBD) fused to flagellin of (Flg), known as mucosal adjuvant, in plants. The fusion protein, targeted to the cytosol, was transiently expressed using the self-replicating vector pEff based on potato virus X genome.

View Article and Find Full Text PDF

Plants become a promising biofactory for the large-scale production of recombinant proteins due to low cost, scalability, and safety. Agroinfiltration of plant leaves with a plant viral vector carrying a gene of interest is a rapid and efficient method for protein production in plants. Currently this method is in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, and protein nanoparticles such as virus-like particles.

View Article and Find Full Text PDF

Hepatitis E is an emerging global disease, mainly transmitted via the fecal-oral route in developing countries, and in a zoonotic manner in the developed world. Pigs and wild boar constitute the primary Hepatitis E virus (HEV) zoonotic reservoir. Consumption of undercooked animal meat or direct contact with infected animals is the most common source of HEV infection in European countries.

View Article and Find Full Text PDF

Objective: Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. The aim of the study is the development of plant expression system for the production of virus-like particles formed by HEV capsid and the characterization of their immunogenicity.

Results: Open reading frame (ORF) 2 encodes the viral capsid protein and possesses candidate for vaccine production.

View Article and Find Full Text PDF

The development of recombinant influenza vaccines with broad spectrum protection is an important task. The combination of conservative viral antigens, such as M2e, the extracellular domain of the transmembrane protein M2, and conserved regions of the second subunit of hemagglutinin (HA), provides an opportunity for the development of universal influenza vaccines. Immunogenicity of the antigens could be enhanced by fusion to bacterial flagellin, the ligand for Toll-like receptor 5, acting as a powerful mucosal adjuvant.

View Article and Find Full Text PDF

The Hepatitis E virus (HEV) is a causative agent of acute hepatitis, mainly transmitted by the fecal-oral route or zoonotic. Open reading frame (ORF) 2 encodes the viral capsid protein, which is essential for virion assembly, host interaction, and inducing neutralizing antibodies. In this study, we investigated whether full-length and N- and C-terminally modified versions of the capsid protein transiently expressed in plants could assemble into highly-immunogenic, virus-like particles (VLPs).

View Article and Find Full Text PDF

Background: Influenza infection could be more effectively controlled if a multi-purpose vaccine with the ability to induce responses against most, or all, influenza A subtypes could be generated. Conserved viral proteins are a promising basis for the creation of a broadly protective vaccine. In the present study, the immunogenicity and protective properties of three recombinant proteins (vaccine candidates), comprising conserved viral proteins fused with bacterial flagellin, were compared.

View Article and Find Full Text PDF

Background: Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new, potentially pandemic, influenza strains. Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A current trend in the design of universal flu vaccines is the construction of recombinant proteins based on combinations of various conserved epitopes of viral proteins (M1, M2, HA2, NP).

View Article and Find Full Text PDF

Background: Influenza is a widely distributed infection that almost annually causes seasonal epidemics. The current egg-based platforms for influenza vaccine production are facing a number of challenges and are failing to satisfy the global demand in the case of pandemics due to the long production time. Recombinant vaccines are an alternative that can be quickly produced in high quantities in standard expression systems.

View Article and Find Full Text PDF

Background: In the course of replication of eukaryotic chromosomes, the telomere length is maintained due to activity of telomerase, the ribonucleoprotein reverse transcriptase. Abolishing telomerase function causes progressive shortening of telomeres and, ultimately, cell cycle arrest and replicative senescence. To better understand the cellular response to telomerase deficiency, we performed a transcriptomic study for the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1 lacking telomerase activity.

View Article and Find Full Text PDF

Agroinfiltration of plant leaves with binary vectors carrying a gene of interest within a plant viral vector is a rapid and efficient method for protein production in plants. Previously, we constructed a self-replicating vector, pA7248AMV, based on the genetic elements of potato virus X (PVX), and have shown that this vector can be used for the expression of recombinant proteins in . However, this vector is almost 18 kb long and therefore not convenient for genetic manipulation.

View Article and Find Full Text PDF

The ectodomain of the conserved influenza matrix protein M2 (M2e) is a promising target for the development of a universal influenza vaccines. Immunogenicity of M2e could be enhanced by its fusion to bacterial flagellin, the ligand for Toll-like receptor 5. Previously we reported the transient expression in plants of a recombinant protein Flg-4M comprising flagellin fused to 4 tandem copies of the M2e.

View Article and Find Full Text PDF

Background: The extracellular domain of matrix protein 2 (M2e) of influenza A virus is a promising target for the development of a universal vaccine against influenza because M2e sequences are highly conserved among human influenza A strains. However, native M2e is poorly immunogenic, but its immunogenicity can be increased by delivery in combination with adjuvants or carrier particles. It was previously shown that fusion of M2e to bacterial flagellin, the ligand for Toll-like receptor (TLR) 5 and powerful mucosal adjuvant, significantly increases the immunogenicity and protective capacity of M2e.

View Article and Find Full Text PDF

Background: Hansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production.

Results: We have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H.

View Article and Find Full Text PDF

A broad range of cellular stresses lead to the inhibition of translation. Despite this, some cellular mRNAs are selectively translated under these conditions. It is widely supposed that cap-independent internal initiation may maintain efficient translation of particular cellular mRNAs under a variety of stresses and other special conditions when cap-dependent protein synthesis is impaired.

View Article and Find Full Text PDF

Adh1, the maize gene encoding alcohol dehydrogenase ADH1, mRNA is efficiently translated in O2-deprived roots of maize, whereas many normal cellular mRNAs are poorly translated. It has been shown that adh, the 5' untranslated region of adh1 mRNA, provides effective translation of mRNA under hypoxia and heat shock conditions in Nicotiana benthamiana plants. We found that adh contains the internal ribosome entry site (IRES) active both in vivo, in N.

View Article and Find Full Text PDF