Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity.
View Article and Find Full Text PDFDefects in the trafficking of subunits encoded by the human ether-à-go-go-related gene (hERG1) can lead to catastrophic arrhythmias and sudden cardiac death due to a reduction in I(Kr)-mediated repolarization. Native I(Kr) channels are composed of two alpha subunits, hERG 1a and 1b. In heterologous expression systems, hERG 1b subunits efficiently produce current only in heteromeric combination with hERG 1a.
View Article and Find Full Text PDFAlternate transcripts of the human ether-à-go-go-related gene (hERG1) encode two subunits, hERG 1a and 1b, which form potassium channels regulating cardiac repolarization, neuronal firing frequency, and neoplastic cell growth. The 1a and 1b subunits are identical except for their unique, cytoplasmic N termini, and they readily co-assemble in heterologous and native systems. We tested the hypothesis that interactions of nascent N termini promote heteromeric assembly of 1a and 1b subunits.
View Article and Find Full Text PDFNovartis Found Symp
August 2005
Until recently, ion channels generating cardiac IKr were thought to comprise four identical alpha subunits encoded by the ERG1a transcript. Despite studies identifying another transcript, ERG1b, failure to identify the corresponding protein in native tissue led to the conclusion that the ERG1b subunit is not a constituent of cardiac IKr channels. Interestingly, hERG1b subunits coexpressed in heterologous systems preferentially form heteromultimers with hERG1a and modify the deactivation gating properties previously attributed to the hERG1a N-terminus.
View Article and Find Full Text PDFPrevious studies suggest native cardiac IKr channels are composed of alpha subunits encoded solely by the 1a transcript of the ERG1 gene. Using isoform-specific ERG1 antibodies, we have new evidence that subunits encoded by an alternate transcript, ERG1b, are also expressed in rat, canine, and human heart. The ERG1a and -1b subunits associate in vivo where they localize to the T tubules of ventricular myocytes.
View Article and Find Full Text PDFHair cells of the inner ear contain high concentrations of calcium-binding proteins that limit calcium signals and prevent cross talk between different signaling pathways during auditory transduction. Using light microscope immunofluorescence and post-embedding immunogold labeling in the electron microscope, we characterized the distribution of three calcium-buffering proteins in the turtle cochlea. Both calbindin-D28k and parvalbumin-beta were confined to hair cells in which they showed a similar distribution, whereas calretinin was present mainly in hair-cell nuclei but also occurred in supporting cells and nerve fibers.
View Article and Find Full Text PDF