Osteoclasts are bone-resorbing cells that undergo extensive changes in morphology throughout their differentiation. Altered osteoclast differentiation and activity lead to changes in pathological bone resorption. The mammalian target of rapamycin (mTOR) is a kinase, and aberrant mTOR complex 1 (mTORC1) signaling is associated with altered bone homeostasis.
View Article and Find Full Text PDFHypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL.
View Article and Find Full Text PDFDuring rheumatoid arthritis (RA), Tumor Necrosis Factor (TNF) activates fibroblast-like synoviocytes (FLS) inducing in a temporal order a constellation of genes, which perpetuate synovial inflammation. Although the molecular mechanisms regulating TNF-induced transcription are well characterized, little is known about the impact of mRNA stability on gene expression and the impact of TNF on decay rates of mRNA transcripts in FLS. To address these issues we performed RNA sequencing and genome-wide analysis of the mRNA stabilome in RA FLS.
View Article and Find Full Text PDFOsteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood.
View Article and Find Full Text PDFSpermatogonial stem and progenitor cells (SSCs) generate adult male gametes. During in vitro expansion, these unipotent murine cells spontaneously convert to multipotent adult spermatogonial-derived stem cells (MASCs). Here we investigate this conversion process through integrative transcriptomic and epigenomic analyses.
View Article and Find Full Text PDFMore than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter.
View Article and Find Full Text PDFInterferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1.
View Article and Find Full Text PDFStudying the factors that control gene expression is of substantial importance for rheumatic diseases with poorly understood etiopathogenesis. In the past, gene expression microarrays have been used to measure transcript abundance on a genome-wide scale in a particular cell, tissue or organ. Microarray analysis has led to gene signatures that differentiate rheumatic diseases, and stages of a disease, as well as response to treatments.
View Article and Find Full Text PDFWhile the importance of gene enhancers in transcriptional regulation is well established, the mechanisms and the protein factors that determine enhancers activity have only recently begun to be unravelled. Recent studies have shown that progesterone receptor (PR) binds regions that display typical features of gene enhancers. Here, we show by ChIP-seq experiments that the chromatin remodeler CHD8 mostly binds promoters under proliferation conditions.
View Article and Find Full Text PDFOverexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3).
View Article and Find Full Text PDFMesenchymal stromal cells have emerged as powerful modulators of the immune system. In this study, we explored how the human macrophage response to TNF is regulated by human synovial fibroblasts, the representative stromal cell type in the synovial lining of joints that become activated during inflammatory arthritis. We found that synovial fibroblasts strongly suppressed TNF-mediated induction of an IFN-β autocrine loop and downstream expression of IFN-stimulated genes (ISGs), including chemokines CXCL9 and CXCL10 that are characteristic of classical macrophage activation.
View Article and Find Full Text PDFSynergistic activation of inflammatory cytokine genes by interferon-γ (IFN-γ) and Toll-like receptor (TLR) signaling is important for innate immunity and inflammatory disease pathogenesis. Enhancement of TLR signaling, a previously proposed mechanism, is insufficient to explain strong synergistic activation of cytokine production in human macrophages. Rather, we found that IFN-γ induced sustained occupancy of transcription factors STAT1, IRF-1, and associated histone acetylation at promoters and enhancers at the TNF, IL6, and IL12B loci.
View Article and Find Full Text PDFThe BCL6 transcriptional repressor is required for the development of germinal center (GC) B cells and diffuse large B cell lymphomas (DLBCLs). Although BCL6 can recruit multiple corepressors, its transcriptional repression mechanism of action in normal and malignant B cells is unknown. We find that in B cells, BCL6 mostly functions through two independent mechanisms that are collectively essential to GC formation and DLBCL, both mediated through its N-terminal BTB domain.
View Article and Find Full Text PDFAlthough prostate cancer (PCa) is the second leading cause of cancer death among men worldwide, not all men diagnosed with PCa will die from the disease. A critical challenge, therefore, is to distinguish indolent PCa from more advanced forms to guide appropriate treatment decisions. We used Enhanced Reduced Representation Bisulfite Sequencing, a genome-wide high-coverage single-base resolution DNA methylation method to profile seven localized PCa samples, seven matched benign prostate tissues, and six aggressive castration-resistant prostate cancer (CRPC) samples.
View Article and Find Full Text PDFGenome-wide binding assays can determine where individual transcription factors bind in the genome. However, these factors rarely bind chromatin alone, but instead frequently bind to cis-regulatory elements (CREs) together with other factors thus forming protein complexes. Currently there are no integrative analytical approaches that can predict which complexes are formed on chromatin.
View Article and Find Full Text PDFA naturally occurring benzofuran derivative, Ebenfuran III (Eb III), was investigated for its antiproliferative effects using the DU-145 prostate cell line. Eb III was isolated from Onobrychis ebenoides of the Leguminosae family, a plant endemic in Central and Southern Greece. We have previously reported that Eb III exerts significant cytotoxic effects on certain cancer cell lines.
View Article and Find Full Text PDFAdult stem cells reside in specialized niches where they receive environmental cues to maintain tissue homeostasis. In mammals, the stem cell niche within hair follicles is home to epithelial hair follicle stem cells and melanocyte stem cells, which sustain cyclical bouts of hair regeneration and pigmentation. To generate pigmented hairs, synchrony is achieved such that upon initiation of a new hair cycle, stem cells of each type activate lineage commitment.
View Article and Find Full Text PDFBackground: The steps of a high-throughput proteomics experiment include the separation, differential expression and mass spectrometry-based identification of proteins. However, the last and more challenging step is inferring the biological role of the identified proteins through their association with interaction networks, biological pathways, analysis of the effect of post-translational modifications, and other protein-related information.
Results: In this paper, we present an integrative visualization methodology that allows combining experimentally produced proteomic features with protein meta-features, typically coming from meta-analysis tools and databases, in synthetic Proteomic Feature Maps.
Background: Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq), enables unbiased and genome-wide mapping of protein-DNA interactions and epigenetic marks. The first step in ChIP-seq data analysis involves the identification of peaks (i.e.
View Article and Find Full Text PDFThe different steps of a proteomics analysis workflow generate a plethora of features for each extracted proteomic object (a protein spot in 2D gel electrophoresis (2-DE), or a peptide peak in liquid chromatography-mass spectrometry (LC-MS) analysis). Yet, the joint visualization of multiple object features on 2D gel-like maps is rather limited in currently available proteomics software packages. We introduce a new, simple, and intuitive visualization method that utilizes spheres to represent proteomic objects on proteomic feature maps, and exploits the spheres size and color to provide simultaneous visualization of user-selected feature pairs.
View Article and Find Full Text PDFThis study aimed to identify candidate new diagnosis and prognosis markers and medicinal targets of prostate cancer (PCa), using state of the art proteomics. A total of 20 prostate tissue specimens from 10 patients with benign prostatic hyperplasia (BPH) and 10 with PCa (Tumour Node Metastasis [TNM] stage T1-T3) were analyzed by isobaric stable isotope labeling (iTRAQ) and two-dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS) approaches using a hybrid quadrupole time-of-flight system (QqTOF). The study resulted in the reproducible identification of 825 nonredundant gene products (p < or = 0.
View Article and Find Full Text PDF