Publications by authors named "Eugenia Delgado"

The nuclear receptor liver receptor homolog-1 (LRH-1) has been shown to promote apoptosis resistance in various tissues and disease contexts; however, its role in liver cell death remains unexplored. Hepatocyte-specific deletion of LRH-1 causes mild steatosis and inflammation but unexpectedly shields female mice from tumor necrosis factor (TNF)-induced hepatocyte apoptosis and associated hepatitis. LRH-1-deficient hepatocytes show markedly attenuated estrogen receptor alpha and elevated nuclear factor κB (NF-κB) activity, while LRH-1 overexpression inhibits NF-κB activity.

View Article and Find Full Text PDF

Liver fibrosis is an excessive and imbalanced deposition of fibrous extracellular matrix (ECM) that is associated with the hepatic wound-healing response. It is also the common mechanism that contributes to the impairment of the liver function that is observed in many chronic liver diseases (CLD). Despite the efforts, no effective therapy against fibrosis exists yet.

View Article and Find Full Text PDF

Cancer cells that are resistant to Bax/Bak-dependent intrinsic apoptosis can be eliminated by proteasome inhibition. Here, we show that proteasome inhibition induces the formation of high molecular weight platforms in the cytosol that serve to activate caspase-8. The activation complexes contain Fas-associated death domain (FADD) and receptor-interacting serine/threonine-protein kinase 1 (RIPK1).

View Article and Find Full Text PDF
Article Synopsis
  • LRH-1 (Liver receptor homolog-1) is a nuclear receptor important for liver function, metabolism, and immune regulation, particularly in macrophage differentiation and pro-inflammatory cytokine production.
  • Inhibiting LRH-1 through pharmacological means or gene knockdown significantly reduces cytokine production in macrophages after lipopolysaccharide (LPS) stimulation, indicating its role in macrophage activation and inflammation.
  • The study suggests that targeting LRH-1 could be a potential therapeutic strategy for treating inflammatory disorders, as its inhibition decreased inflammation-related indicators without harming liver health.
View Article and Find Full Text PDF

LRH-1 (liver receptor homolog-1/NR5a2) is an orphan nuclear receptor, which regulates glucose and lipid metabolism, as well as intestinal inflammation via the transcriptional control of intestinal glucocorticoid synthesis. Predominantly expressed in epithelial cells, its expression and role in immune cells are presently enigmatic. LRH-1 was found to be induced in immature and mature T lymphocytes upon stimulation.

View Article and Find Full Text PDF

The intestinal epithelium represents an exquisite complex combination of specialized cellular components, structural organization, as well as fine-tuned maintenance and renewal mechanisms that ensure its barrier and absorptive function. Defects in one or more of these components can lead to devastating consequences for the organisms, and when chronic, even develop into inflammatory diseases, such as Crohn's disease or ulcerative colitis. In these scenarios, the cytokine TNF (Tumor Necrosis Factor α) appears to be a major inflammation-promoting and tissue damage-promoting effector molecule.

View Article and Find Full Text PDF

CD95/Fas ligand (FasL) is a cell death-promoting member of the tumor necrosis factor family with important functions in the regulation of T-cell homeostasis and cytotoxicity. In T cells, FasL expression is tightly regulated on a transcriptional level involving a complex set of different transcription factors. The orphan nuclear receptor liver receptor homolog-1 (LRH-1/NR5a2) is involved in the regulation of development, lipid metabolism and proliferation and is predominantly expressed in epithelial tissues.

View Article and Find Full Text PDF

Background And Aims: Tumor necrosis factor (TNF) is a cytokine that promotes inflammation and contributes to pathogenesis of inflammatory bowel diseases. Unlike other cells and tissues, intestinal epithelial cells undergo rapid cell death upon exposure to TNF, by unclear mechanisms. We investigated the roles of inhibitor of apoptosis proteins (IAPs) in the regulation of TNF-induced cell death in the intestinal epithelium of mice and intestinal organoids.

View Article and Find Full Text PDF

The intestinal epithelium has an important function in the absorption of nutrients contained in the food. Furthermore, it also has an important barrier function, preventing luminal pathogens from entering the bloodstream. This single cell layer epithelium is quite sensitive to various cell death-promoting triggers, including drugs, irradiation, and TNF family members, leading to loss of barrier integrity, epithelial erosion, inflammation, malabsorption, and diarrhea.

View Article and Find Full Text PDF

Apoptosis is a form of programmed cell death that is essential for the efficient elimination of surplus, damaged, and transformed cells during metazoan embryonic development and adult tissue homeostasis. Situated at the interface of apoptosis initiation and execution, mitochondrial outer membrane permeabilization (MOMP) represents one of the most fundamental processes during apoptosis signal transduction. It was shown that MOMP can spatiotemporally propagate through cells, in particular in response to extrinsic apoptosis induction.

View Article and Find Full Text PDF

During apoptosis, the mitochondrial outer membrane is permeabilized, leading to the release of cytochrome c that activates downstream caspases. Mitochondrial outer membrane permeabilization (MOMP) has historically been thought to occur synchronously and completely throughout a cell, leading to rapid caspase activation and apoptosis. Using a new imaging approach, we demonstrate that MOMP is not an all-or-nothing event.

View Article and Find Full Text PDF

Apoptosis signaling crucially depends on caspase activities. Caspase-2 shares features of both initiator and effector caspases. Opinions are divided on whether caspase-2 activity is established during apoptosis initiation or execution in response to DNA damage, death receptor stimulation, or heat shock.

View Article and Find Full Text PDF

N-nitrosopiperidine (NPIP) and N-nitrosodibutylamine (NDBA) belong to a group of N-nitrosamines that are widely distributed in foodstuffs and the occupational environment. In the present study, the human promyelocytic leukemia cell line HL-60, was used to characterize the apoptotic effects of N-nitrosamines, and to examine the production of reactive oxygen species (ROS). Apoptotic cells were identified by (i) chromatin condensation (ii) flow cytometry analysis and (iii) poly(ADP-ribose) polymerase (PARP) cleavage.

View Article and Find Full Text PDF