Greenhouse gas (GHG) emissions from beef production in the United States are unevenly distributed across the supply chain and production regions, complicating where and how to reduce emissions most effectively. Using spatially explicit life cycle assessment methods, we quantify the baseline GHG emissions and mitigation opportunities of 42 practices spanning the supply chain from crop and livestock production to processing. We find that the potential to reduce GHGs across the beef sector ranges up to 30% (20 million tonnes COe reduced and 58 million tonnes CO sequestered each year relative to the baseline) under ubiquitous adoption assumptions, largely driven by opportunities in the grazing stage.
View Article and Find Full Text PDFControlling invasive species is critical for conservation but can have unintended consequences for native species and divert resources away from other efforts. This dilemma occurs on a grand scale in the North American Great Lakes, where dams and culverts block tributary access to habitat of desirable fish species and are a lynchpin of long-standing efforts to limit ecological damage inflicted by the invasive, parasitic sea lamprey (Petromyzon marinus). Habitat restoration and sea-lamprey control create conflicting goals for managing aging infrastructure.
View Article and Find Full Text PDFConservation practitioners face difficult choices in apportioning limited resources between rare species (to ensure their existence) and common species (to ensure their abundance and ecosystem contributions). We quantified the opportunity costs of conserving rare species of migratory fishes in the context of removing dams and retrofitting road culverts across 1,883 tributaries of the North American Great Lakes. Our optimization models show that maximizing total habitat gains across species can be very efficient in terms of benefits achieved per dollar spent, but disproportionately benefits common species.
View Article and Find Full Text PDF