Publications by authors named "Eugene Y Krynetski"

Background: Polymorphisms that reduce the activity of thiopurine S-methyltransferase (TPMT) cause adverse reactions to conventional doses of thiopurines, routinely used for antileukemic and immunosuppressive treatment. There are more than 20 variant alleles of TPMT that cause decreased enzymatic activity. We studied the most common variant alleles of TPMT and their frequency distribution in a large cohort of multiracial residents in the Russian Federation and compared their frequencies in children with and without malignancy to determine whether TPMT gene abnormality is associated with hematologic malignancy.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with glycolytic and non-glycolytic functions, including pro-apoptotic activity. GAPDH accumulates in the nucleus after cells are treated with genotoxic drugs, and it is present in a protein complex that binds DNA modified by thioguanine incorporation. We identified a novel CRM1-dependent nuclear export signal (NES) comprising 13 amino acids (KKVVKQASEGPLK) in the C-terminal domain of GAPDH, truncation or mutation of which abrogated CRM1 binding and caused nuclear accumulation of GAPDH.

View Article and Find Full Text PDF

The amount of MSH2 protein, a major component of the mismatch repair system, was found to differ >10-fold in leukemia cells from children with newly diagnosed acute lymphoblastic leukemia, with a subgroup of patients (17%) having undetectable MSH2 protein. We therefore used a murine Msh2 knockout model to elucidate the in vivo importance of MSH2 protein expression in determining thiopurine hematopoietic cytotoxicity. After mercaptopurine (MP) treatment (30 mg/kg/day for 14 days), there was a significantly greater decrease in circulating leukocytes in Msh2+/+ and Msh2+/- mice when compared with Msh2-/- mice (p < 0.

View Article and Find Full Text PDF

Thiopurine treatment of human leukemia cells deficient in components of the mismatch repair system (Nalm6) initiated apoptosis after incorporation into DNA, as revealed by caspase activation and terminal deoxynucleotidyl transferase-mediated nick end labeling assay. To elucidate the cellular sensor(s) responsible for recognition of DNA damage in cells with an inactive mismatch repair system, we isolated a multiprotein nuclear complex that preferentially binds DNA with thioguanine incorporated. The components of this nuclear multiprotein complex, as identified by protein mass spectroscopy, included high mobility group proteins 1 and 2 (HMGB1, HMGB2), heat shock protein HSC70, protein disulfide isomerase ERp60, and glyceraldehyde 3-phosphate dehydrogenase.

View Article and Find Full Text PDF

Mercaptopurine and thioguanine, two of the most widely used antileukemic agents, exert their cytotoxic, therapeutic effects by being incorporated into DNA as deoxy-6-thioguanosine. However, the molecular mechanism(s) by which incorporation of these thiopurines into DNA translates into cytotoxicity is unknown. The solution structure of thioguanine-modified duplex DNA presented here shows that the effects of the modification on DNA structure were subtle and localized to the modified base pair.

View Article and Find Full Text PDF

Genetic polymorphisms are well-recognized causes of interindividual differences in disease risk and treatment response in humans. For genes containing multiple single-nucleotide polymorphisms (SNPs), haplotype structure is often the principal determinant of phenotypic consequences, and haplotype distribution represents the best approach for assessing patterns of linkage disequilibrium. To permit more widespread molecular determination of haplotypes, we developed a simple yet robust method to determine haplotype structure for multiple SNPs located up to 30 kb apart in genomic DNA using long-range polymerase chain reaction (LR-PCR) and intramolecular ligation.

View Article and Find Full Text PDF