Dual-comb spectroscopy in the ultraviolet (UV) and visible would enable broad bandwidth electronic spectroscopy with unprecedented frequency resolution. However, there are significant challenges in generation, detection, and processing of dual-comb data that have restricted its progress in this spectral region. In this work, we leverage robust 1550 nm few-cycle pulses to generate frequency combs in the UV-visible.
View Article and Find Full Text PDFKerr microcombs hold the promise of bringing frequency combs onto the chip and into a variety of applications requiring low size, weight, power, and cost. However, reliable Kerr microcomb generation is hindered by the thermal effect and multistability of dissipative Kerr solitons (DKSs). Past approaches toward Kerr microcomb reliability include either deterministic single-soliton generation or self-starting soliton behavior but not both.
View Article and Find Full Text PDFWe demonstrate the first compact photonic flywheel with sub-fs time jitter (averaging times up to 10 μs) at the quantum-noise limit of a monolithic fiber resonator. Such quantum-limited performance is accessed through novel two-step pumping scheme for dissipative Kerr soliton generation. Controllable interaction between stimulated Brillouin lasing and Kerr nonlinearity enhances the DKS coherence and mitigates the thermal instability challenge, achieving a remarkable 22-Hz intrinsic comb linewidth and an unprecedented phase noise of -180 dBc/Hz at 945-MHz carrier at free running.
View Article and Find Full Text PDF