Publications by authors named "Eugene Shumilov"

This study aims to generate and also validate an automatic detection algorithm for pharyngeal airway on CBCT data using an AI software (Diagnocat) which will procure a measurement method. The second aim is to validate the newly developed artificial intelligence system in comparison to commercially available software for 3D CBCT evaluation. A Convolutional Neural Network-based machine learning algorithm was used for the segmentation of the pharyngeal airways in OSA and non-OSA patients.

View Article and Find Full Text PDF

In this study, a novel AI system based on deep learning methods was evaluated to determine its real-time performance of CBCT imaging diagnosis of anatomical landmarks, pathologies, clinical effectiveness, and safety when used by dentists in a clinical setting. The system consists of 5 modules: ROI-localization-module (segmentation of teeth and jaws), tooth-localization and numeration-module, periodontitis-module, caries-localization-module, and periapical-lesion-localization-module. These modules use CNN based on state-of-the-art architectures.

View Article and Find Full Text PDF

Background: The aim of this study was to evaluate the success of the artificial intelligence (AI) system in implant planning using three-dimensional cone-beam computed tomography (CBCT) images.

Methods: Seventy-five CBCT images were included in this study. In these images, bone height and thickness in 508 regions where implants were required were measured by a human observer with manual assessment method using InvivoDental 6.

View Article and Find Full Text PDF

Purpose: The aim of this study was to evaluate the diagnostic performance of artificial intelligence (AI) application evaluating of the impacted third molar teeth in Cone-beam Computed Tomography (CBCT) images.

Material And Methods: In total, 130 third molar teeth (65 patients) were included in this retrospective study. Impaction detection, Impacted tooth numbers, root/canal numbers of teeth, relationship with adjacent anatomical structures (inferior alveolar canal and maxillary sinus) were compared between the human observer and AI application.

View Article and Find Full Text PDF