This study aims to generate and also validate an automatic detection algorithm for pharyngeal airway on CBCT data using an AI software (Diagnocat) which will procure a measurement method. The second aim is to validate the newly developed artificial intelligence system in comparison to commercially available software for 3D CBCT evaluation. A Convolutional Neural Network-based machine learning algorithm was used for the segmentation of the pharyngeal airways in OSA and non-OSA patients.
View Article and Find Full Text PDFIn this study, a novel AI system based on deep learning methods was evaluated to determine its real-time performance of CBCT imaging diagnosis of anatomical landmarks, pathologies, clinical effectiveness, and safety when used by dentists in a clinical setting. The system consists of 5 modules: ROI-localization-module (segmentation of teeth and jaws), tooth-localization and numeration-module, periodontitis-module, caries-localization-module, and periapical-lesion-localization-module. These modules use CNN based on state-of-the-art architectures.
View Article and Find Full Text PDFBackground: The aim of this study was to evaluate the success of the artificial intelligence (AI) system in implant planning using three-dimensional cone-beam computed tomography (CBCT) images.
Methods: Seventy-five CBCT images were included in this study. In these images, bone height and thickness in 508 regions where implants were required were measured by a human observer with manual assessment method using InvivoDental 6.
J Stomatol Oral Maxillofac Surg
September 2021
Purpose: The aim of this study was to evaluate the diagnostic performance of artificial intelligence (AI) application evaluating of the impacted third molar teeth in Cone-beam Computed Tomography (CBCT) images.
Material And Methods: In total, 130 third molar teeth (65 patients) were included in this retrospective study. Impaction detection, Impacted tooth numbers, root/canal numbers of teeth, relationship with adjacent anatomical structures (inferior alveolar canal and maxillary sinus) were compared between the human observer and AI application.