Publications by authors named "Eugene Schuster"

Article Synopsis
  • Intrinsic breast cancer molecular subtyping (IBCMS) is important for predicting outcomes and guiding treatment in breast cancer patients.
  • This study evaluated various IBCMS methods and gene-expression platforms in two clinical trials (PALOMA-2 and PALLET) and found differing levels of agreement in molecular subtype assignments.
  • The results emphasize the need for standardized approaches in IBCMS to avoid potential misguidance in treatment decisions.
View Article and Find Full Text PDF

Unlabelled: Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated β2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity.

View Article and Find Full Text PDF

Aromatase inhibitors (AIs) reduce recurrences and mortality in postmenopausal patients with oestrogen receptor positive (ER+) breast cancer (BC), but >20% of patients will eventually relapse. Given the limited understanding of intrinsic resistance in these tumours, here we conduct a large-scale molecular analysis to identify features that impact on the response of ER + HER2- BC to AI. We compare the 15% of poorest responders (PRs, n = 177) as measured by proportional Ki67 changes after 2 weeks of neoadjuvant AI to good responders (GRs, n = 190) selected from the top 50% responders in the POETIC trial and matched for baseline Ki67 categories.

View Article and Find Full Text PDF

Soft tissue sarcomas (STS) are rare and diverse mesenchymal cancers with limited treatment options. Here we undertake comprehensive proteomic profiling of tumour specimens from 321 STS patients representing 11 histological subtypes. Within leiomyosarcomas, we identify three proteomic subtypes with distinct myogenesis and immune features, anatomical site distribution and survival outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Fulvestrant, a selective estrogen receptor degrader (SERD), is limited in breast cancer treatment due to low oral bioavailability, while the investigational SERD elacestrant is more effective and can be taken orally.
  • Both drugs are shown to negatively affect tumor growth in ER+ patient-derived models, but elacestrant remains effective even after resistance develops against fulvestrant.
  • When used in conjunction with CDK4/6 inhibitors, elacestrant enhances anti-cancer effects and demonstrates potential against drug-resistant cells, signifying the need for further clinical testing.
View Article and Find Full Text PDF

Background: In clinical practice, oestrogen receptor (ER) analysis is almost entirely by immunohistochemistry (IHC). ASCO/CAP recommends cut-offs of < 1% (negative) and 1-10% (low) cells positive. There is uncertainty whether patients with ER low tumours benefit from endocrine therapy.

View Article and Find Full Text PDF

Background: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks' presurgical AI treatment in ER+/HER2+ BCs.

View Article and Find Full Text PDF

Purpose: Aromatase inhibitor (AI) treatment is the standard of care for postmenopausal women with primary estrogen receptor-positive breast cancer. The impact of duration of neoadjuvant endocrine therapy (NET) on molecular characteristics is still unknown. We evaluated and compared changes of gene expression profiles under short-term (2-week) versus longer-term neoadjuvant AIs.

View Article and Find Full Text PDF

Multi-gene prognostic signatures including the Oncotype® DX Recurrence Score (RS), EndoPredict® (EP) and Prosigna® (Risk Of Recurrence, ROR) are widely used to predict the likelihood of distant recurrence in patients with oestrogen-receptor-positive (ER+), HER2-negative breast cancer. Here, we describe the development and validation of methods to recapitulate RS, EP and ROR scores from NanoString expression data. RNA was available from 107 tumours from postmenopausal women with early-stage, ER+, HER2- breast cancer from the translational Arimidex, Tamoxifen, Alone or in Combination study (TransATAC) where previously these signatures had been assessed with commercial methodology.

View Article and Find Full Text PDF

Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome in advanced oestrogen receptor (ER)-positive breast cancer, however relapse is inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy number (CN) alterations are associated with irreversible-resistance to endocrine therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2.

View Article and Find Full Text PDF

The Insulin/IGF-1 signalling (IIS) pathway plays an essential role in the regulation of glucose and lipid homeostasis. At the same time, a reduction in the IIS pathway activity can extend lifespan and healthspan in various model organisms. Amongst a number of body organs that sense and respond to insulin/IGF-1, the adipose tissue has a central role in both the metabolic and lifespan effects of IIS at the organismal level.

View Article and Find Full Text PDF

After publication of the original article [1], we were notified that an author's surname has been erroneously spelled. Elisabetta Maragoni's family name should be replaced with Marangoni.

View Article and Find Full Text PDF

Background: Endocrine therapies are still the main strategy for the treatment of oestrogen receptor-positive (ER+) breast cancers (BC), but resistance remains problematic. Cross-talk between ER and PI3K/AKT/mTORC has been associated with ligand-independent transcription of ER. We have previously reported the anti-proliferative effects of the combination of everolimus (an mTORC1 inhibitor) with endocrine therapy in resistance models, but potential routes of escape via AKT signalling can lead to resistance; therefore, the use of dual mTORC1/2 inhibitors has met with significant interest.

View Article and Find Full Text PDF

Purpose: Advanced breast cancer (ABC) has not been subjected to the same degree of molecular scrutiny as early primary cancer. Breast cancer evolves with time and under the selective pressure of treatment, with the potential to acquire mutations with resistance to treatment and disease progression. To identify potentially targetable mutations in advanced breast cancer, we performed prospective molecular characterization of a cohort of patients with ABC.

View Article and Find Full Text PDF

Purpose: To investigate the presence of mutations in primary estrogen-receptor-positive (ER) breast cancer treated with extended (>4 weeks) neoadjuvant (presurgical) aromatase inhibitor (NAI) therapy and to identify patients who may gain less benefit from aromatase inhibition (AI) alone based upon on-treatment changes in gene expression.

Experimental Design: We evaluated ER, progesterone receptor, and Ki67 by immunostaining, mutations by droplet-digital PCR and expression of over 800 key breast cancer genes in paired pre- and post-NAI tumor samples from 87 ER breast cancer patients.

Results: Cell proliferation and estrogen-regulated genes (ERG) remained suppressed in most tumors indicative of persistent response to NAI.

View Article and Find Full Text PDF

Purpose: Although aromatase inhibitor (AI) treatment is effective in estrogen receptor-positive postmenopausal breast cancer, resistance is common and incompletely explained. Genomic instability, as measured by somatic copy number alterations (SCNAs), is important in breast cancer development and prognosis. SCNAs to specific genes may drive intrinsic resistance, or high genomic instability may drive tumor heterogeneity, which allows differential response across tumors and surviving cells to evolve resistance to treatment rapidly.

View Article and Find Full Text PDF

Background: Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed.

View Article and Find Full Text PDF

Dietary restriction (DR) is the most widely studied non-genetic intervention capable of extending lifespan across multiple taxa. Modulation of genes, primarily within the insulin/insulin-like growth factor signalling (IIS) and the mechanistic target of rapamycin (mTOR) signalling pathways also act to extend lifespan in model organisms. For example, mice lacking insulin receptor substrate-1 (IRS1) are long-lived and protected against several age-associated pathologies.

View Article and Find Full Text PDF

Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study.

View Article and Find Full Text PDF

We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3' untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs.

View Article and Find Full Text PDF

Gene expression is often controlled by transcriptional repressors during development. Many transcription factors lack intrinsic repressive activity but recruit co-factors that inhibit productive transcription. Here we discuss new insights and models for repression mediated by the Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressor proteins.

View Article and Find Full Text PDF

Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers.

View Article and Find Full Text PDF

The DAF-16/FoxO transcription factor controls growth, metabolism and aging in Caenorhabditis elegans. The large number of genes that it regulates has been an obstacle to understanding its function. However, recent analysis of transcript and chromatin profiling implies that DAF-16 regulates relatively few genes directly, and that many of these encode other regulatory proteins.

View Article and Find Full Text PDF

Stem cells have been found in most tissues/organs. These somatic stem cells produce replacements for lost and damaged cells, and it is not completely understood how this regenerative capacity becomes diminished during aging. To study the possible involvement of epigenetic changes in somatic stem cell aging, we used murine hematopoiesis as a model system.

View Article and Find Full Text PDF

The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb) is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG) protein Pleiohomeotic (Pho), and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: