Publications by authors named "Eugene R Zubarev"

Coating nanoparticles with stealth epilayers increases circulation time by evading opsonization, macrophage phagocytosis, and reticuloendothelial sequestration. However, this also reduces internalization by cancer cells upon reaching the tumor. We designed gold nanorods (GNRs) with an epilayer that retains stealth properties in circulation but transforms spontaneously in the acidotic tumor microenvironment to a cell-penetrating particle.

View Article and Find Full Text PDF

This manuscript describes a universal method for the spontaneous self-assembly of nanostructures ranging from 2-4 nm spherical particles to ∼440 nm long anisotropic nanorods into ring-like superstructures. The nanostructures composed of Au, Pt, and Pd as surface materials were synthesized in an aqueous cetyltrimethyl ammonium bromide (CTAB) solution. The ligand exchange technique with 4-mercaptophenol was applied to replace CTAB from the surface of nanostructures with a functional thiol.

View Article and Find Full Text PDF

Nanostructures composed of a gold nanorod (AuNR) core and a Pd/Pt shell are of great interest due to their potential application as plasmon resonance-enhanced catalysts. However, the synthesis of well-defined one-dimensional bimetallic nanostructures with precise control over shell thickness and length remains a challenge. In this study, we report a detailed and systematic study on the chemical synthesis of a uniform Pd shell on single crystalline and pentahedrally twinned (PHT) AuNRs of various lengths.

View Article and Find Full Text PDF

Gold nanowires (AuNWs) possess strong potential application in micro- and nanoelectronics as well as in plasmonic waveguides because of their low electrical resistance. However, the synthesis of pure solvent-dispersible AuNWs with full control over their length still remains a challenge. All the previously reported methods produce AuNWs with other impurities such as smaller nanorods, platelets, and spherical particles and are limited to a certain length (typically below 10 μm).

View Article and Find Full Text PDF

Wet chemistry methods have proven to be successful for the synthesis of nanocrystals. However, the size and shape control is often lost when the dimensions of the particles exceed several hundred nanometers. Therefore, a synthetic transformation of nano- to microcrystals in solution remains to be a challenge.

View Article and Find Full Text PDF

Size and shape tunability have been widely demonstrated for gold nanorods (AuNRs), but reproducible and reliable protocols for the synthesis of small nanocrystals with high yield are still needed for potential biomedical applications. Here, we present novel seed-mediated and seedless protocols for gold nanorods by incorporating bioadditives or small thiolated molecules during the growth stage. The bioadditives glutathione (GSH), oxidized glutathione (GSSG), l-cysteine (l-cys), and l-methionine (l-met) are utilized in nanomolar and micromolar concentrations to modify the aspect ratio of AuNRs in a reproducible form.

View Article and Find Full Text PDF

A new seed-mediated synthesis of AuHNPs in high yield is described using hydroquinone as a weak reductant and poly(vinylpyrrolidone) as a shape-directing additive. We obtain distinct and small edge lengths of AuHNPs with long-term shape stability. Also, PVP enhances the monodispersity and enables the higher stability of functionalized nanoprisms.

View Article and Find Full Text PDF

Gold nanoprisms (AuNPRs) are anisotropic nanostructures that have gained great attention in recent years because of their interesting and unique optical properties that can be tailored for biomedical, energy, and sensing applications. At present, several protocols have reported the high yield synthesis of AuNPRs of different dimensions using a seed-mediated approach. However, there is a need to develop reproducible and scalable methods with the goal of a controllable synthesis.

View Article and Find Full Text PDF

This manuscript describes a reversible wet chemical process for the tip-selective one-dimensional (1D) growth and dissolution of gold nanorods (AuNRs) and gold nanowires (AuNWs). Tip-selective dissolution was achieved by oxidation of AuNRs with a Au(III)/CTAB complex, whereas the growth of AuNRs was carried out by the reduction of Au(I) ions on the AuNR surface with a mild reducing agent, ascorbic acid (AA). Both the dissolution and growth processes are highly tip selective and proceed exclusively in one dimension.

View Article and Find Full Text PDF

Although gold nanorods (AuNRs) have strong potential applications in nanotechnology, plasmonics, and sensing, the scale-up synthesis of isolated AuNRs in gram quantities remains a challenge. Nearly all previously reported methods produce aqueous solutions of cetyltrimethylammonium bromide (CTAB)-coated AuNRs in milligram quantities with yields of approximately 20-30 % in terms of Au to Au conversion. In addition, it is difficult to remove the CTAB bilayer from the surface of AuNRs and yet make them soluble and functionalized for further processing and chemical modification.

View Article and Find Full Text PDF

A novel modification for the seedless synthesis of gold nanorods (AuNRs) has been developed. Nanomolar concentrations of 10 kDa poly(vinylpyrrolidone) (PVP) can be introduced to a growth solution containing 25, 50, or 100 mM cetyltrimethylammonium bromide (CTAB) to significantly reduce the dimensions of AuNRs. We found that PVP accelerates the growth rate of AuNRs by more than two times that of nanorods grown in 50 and 100 mM CTAB solutions.

View Article and Find Full Text PDF

Interactions between fluorophores and plasmonic nanoparticles modify the fluorescence intensity, shape, and position of the observed emission pattern, thus inhibiting efforts to optically super-resolve plasmonic nanoparticles. Herein, we investigate the accuracy of localizing dye fluorescence as a function of the spectral and spatial separations between fluorophores (Alexa 647) and gold nanorods (NRs). The distance at which Alexa 647 interacts with NRs is varied by layer-by-layer polyelectrolyte deposition while the spectral separation is tuned by using NRs with varying localized surface plasmon resonance (LSPR) maxima.

View Article and Find Full Text PDF

The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration.

View Article and Find Full Text PDF

We investigated the effects of cross sectional geometry on surface plasmon polariton propagation in gold nanowires (NWs) using bleach-imaged plasmon propagation and electromagnetic simulations. Chemically synthesized NWs have pentagonally twinned crystal structures, but recent advances in synthesis have made it possible to amplify this pentagonal shape to yield NWs with a five-pointed-star cross section and sharp end tips. We found experimentally that NWs with a five-pointed-star cross section, referred to as SNWs, had a shorter propagation length for surface plasmon polaritons at 785 nm, but a higher effective incoupling efficiency compared to smooth NWs with a pentagonal cross section, labeled as PNWs.

View Article and Find Full Text PDF

Understanding whether noble-metal nanostructures can be trapped optically and under what conditions will enable a range of applications that exploit their plasmonic properties. However, there are several nontrivial issues that first need to be resolved. A major one is that metal particles experience strong radiation pressure in optical beams, while stable optical trapping requires an attractive force greater than this radiation pressure.

View Article and Find Full Text PDF

In this work we address the challenge of furthering our understanding of the driving forces responsible for the metal-metal interactions in industrially relevant bimetallic nanocatalysts, by taking a comparative approach to the atomic scale characterization of two core-shell nanorod systems (AuPd and AuRh). Using aberration-corrected scanning transmission electron microscopy, we show the existence of a randomly mixed alloy layer some 4-5 atomic layers thick between completely bulk immiscible Au and Rh, which facilitates fully epitaxial overgrowth for the first few atomic layers. In marked contrast in AuPd nanorods, we find atomically sharp segregation resulting in a quasi-epitaxial, strained interface between bulk miscible metals.

View Article and Find Full Text PDF

A comprehensive understanding of the type of modes and their propagation length for surface plasmon polaritons (SPPs) in gold nanowires is essential for potential applications of these materials as nanoscale optical waveguides. We have studied chemically synthesized single gold nanowires by a novel technique called bleach-imaged plasmon propagation (BlIPP), which relies on the plasmonic near-field induced photobleaching of a dye to report the SPP propagation in nanowires. We observed a much longer propagation length of 7.

View Article and Find Full Text PDF

Gold nanorods have received much attention due to their unique optical and electronic properties which are dependent on their shape, size, and aspect ratio. This article covers in detail the synthesis, functionalization, self-assembly, and sensing applications of gold nanorods. The synthesis of three major types of rods is discussed: single-crystalline and pentahedrally-twinned rods, which are synthesized by wet chemistry methods, and polycrystalline rods, which are synthesized by templated deposition.

View Article and Find Full Text PDF

This review will first look at the various covalent strategies that have been developed to attach drugs to gold nanoparticles as well as the strengths and limitations of such strategies. After examining general strategies for the synthesis of gold nanoparticles and their subsequent covalent functionalization, this review will focus on nanoparticle conjugates for gene therapy, antibacterial, and anticancer applications including the use of gold nanoparticles with intrinsically therapeutic properties. The effects of targeting and cellular uptake of gold nanoparticles will also be discussed.

View Article and Find Full Text PDF

Recently, branched and star-shaped gold nanoparticles have received significant attention for their unique optical and electronic properties, but most examples of such nanoparticles have a zero-dimensional shape with varying numbers of branches coming from a quasi-spherical core. This report details the first examples of higher-order penta-branched gold particles including rod-, wire-, and platelike particles which contain a uniquely periodic starfruitlike morphology. These nanoparticles are synthesized in the presence of silver ions by a seed-mediated approach based on utilizing highly purified pentahedrally twinned gold nanorods and nanowires as seed particles.

View Article and Find Full Text PDF

We demonstrate scaffolding of plasmonic nanoparticles by topological defects induced by colloidal microspheres to match their surface boundary conditions with a uniform far-field alignment in a liquid crystal host. Displacing energetically costly liquid crystal regions of reduced order, anisotropic nanoparticles with concave or convex shapes not only stably localize in defects but also self-orient with respect to the microsphere surface. Using laser tweezers, we manipulate the ensuing nanoparticle-microsphere colloidal dimers, probing the strength of elastic binding and demonstrating self-assembly of hierarchical colloidal superstructures such as chains and arrays.

View Article and Find Full Text PDF

Recent advances in chemical synthesis have made it possible to produce gold and silver nanowires that are free of large-scale crystalline defects and surface roughness. Surface plasmons can propagate along the wires, allowing them to serve as optical waveguides with cross sections much smaller than the optical wavelength. Gold nanowires provide improved chemical stability as compared to silver nanowires, but at the cost of higher losses for the propagating plasmons.

View Article and Find Full Text PDF

Gold nanorods have great potential in a variety of applications because of their unique physical properties. In this article, we present the layer-by-layer (LbL) assembly of thin films containing positively charged gold nanorods that are covalently functionalized by cationic thiol molecules. The cationic gold nanorods are uniformly distributed in ultrathin nanocomposite LbL thin films.

View Article and Find Full Text PDF