The electro-optical behavior of deformed helix ferroelectric liquid crystal in reflective mode is described in this paper. The electrically controlled reflectance has been measured at subkilohertz driving voltage frequency for different polarizations of the incident light and compared quite successfully with the simulation results.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2011
Electro-optical properties of deformed helix ferroelectric liquid crystal (DHFLC) cells are studied by using a general theoretical approach to polarization gratings in which the transmission and reflection matrices of diffraction orders are explicitly related to the evolution operator of equations for the Floquet harmonics. In the short-pitch approximation, a DHFLC cell is shown to be optically equivalent to a uniformly anisotropic biaxial layer where one of the optical axes is normal to the bounding surfaces. For in-plane anisotropy, orientation of the optical axes and birefringence are both determined by the voltage applied across the cell and represent the parameters that govern the transmittance of normally incident light passing through crossed polarizers.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2007
We study both theoretically and experimentally switching dynamics in asymmetric surface stabilized ferroelectric liquid crystal cells where the bounding surfaces are treated differently to produce asymmetry in their anchoring properties. Our electro-optic measurements of the switching voltage thresholds, V+ and -V{-}, that are determined by the peaks of the reversal polarization current reveal the frequency dependent shift of the hysteresis loop, V{+}-V{-}. We examine the predictions of the uniform dynamic model with the anchoring energy taken into account.
View Article and Find Full Text PDF