Highly stable sample rotation is important in many solid-state NMR experiments. Whether the necessary stability is achieved is not always clear. Typically only an average frequency over some time interval (often relatively long and unknown) is available from the spinning speed controller readout, which is not representative of the short-term variations of instantaneous rotation frequency.
View Article and Find Full Text PDFSetting the magic angle and accurately maintaining it over a full range of experimental conditions can be a frustrating experience. We present a simple optical device for immediate indication of the stator angle, free of mechanical uncertainties present in typical adjustment mechanisms.
View Article and Find Full Text PDFA new approach using temperature to control the spinning speed of a sample rotor in magic-angle spinning NMR is presented. Instead of an electro-mechanical valve that regulates the flow of drive gas to control the spinning speed in traditional MAS NMR systems, we use a small heater wire located directly in the stator. The sample spinning speed is controlled very accurately with a surprisingly low heating power of 1 W.
View Article and Find Full Text PDFA frequency-selective REDOR experiment is described for SI2 spin systems. The experiment causes the net dipolar dephasing of the S spin to evolve only under the influence of one of the I spins. The experiment is based on a single pair of appropriately phased 90 degrees I-spin pulses, and the I spin causing the S-spin dipolar dephasing is determined by the relative phases between the two 90 degrees pulses.
View Article and Find Full Text PDFWe characterize the spatiotemporal evolution of a photosensitive Belousov-Zhabotinsky medium that is made up of coupled oscillatory cells with randomly distributed frequencies. The medium evolves from an initial state of multiple wave sources to a synchronized state governed by a single wave source. The synchronization occurs via a competition between the sources, which arises when the oscillators are not identical but have slightly different natural frequencies.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2003
The synchronization of two distributed Belousov-Zhabotinsky systems is experimentally and theoretically investigated. Symmetric local coupling of the systems is made possible with the use of a video camera-projector scheme. The spatial disorder of the coupled systems, with random initial configurations of spirals, gradually decreases until a final state is attained, which corresponds to a synchronized state with a single spiral in each system.
View Article and Find Full Text PDFExperimental studies have revealed that the refinement of early, imprecise connections in the developing visual system involves activity in the retina before the onset of vision. We study the evolution of initially random unidirectional connections between two excitable layers of FitzHugh-Nagumo neurons with simulated spontaneous activity in the input layer. Lateral coupling within the layers yields synchronous neural wave activity that serves as a template for the Hebbian learning process, which establishes topographically precise interlayer connections.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2002
Propagating wave segments are stabilized to a constant size and shape by applying negative feedback from the measured wave area to the excitability of the medium. The locus of steady-state wave size as a function of excitability defines the perturbation threshold for the initiation of spiral waves. This locus also defines the excitability boundary for spiral wave behavior in active media.
View Article and Find Full Text PDFIntricate patterns of wave propagation are exhibited in a chemical reaction-diffusion system with spatiotemporal feedback. Wave behavior is controlled by feedback-regulated excitability gradients that guide propagation in specified directions. Waves interacting with boundaries and with other waves are observed when interaction terms are incorporated into the control algorithm.
View Article and Find Full Text PDF