Despite the need for new antibiotics to treat drug-resistant bacteria, current clinical combinations are largely restricted to β-lactam antibiotics paired with β-lactamase inhibitors. We have adapted a Staphylococcus aureus antisense knockdown strategy to genetically identify the cell division Z ring components-FtsA, FtsZ, and FtsW-as β-lactam susceptibility determinants of methicillin-resistant S. aureus (MRSA).
View Article and Find Full Text PDFAbrogation of p53 function occurs in almost all human cancers, with more than 50% of cancers harboring inactivating mutations in p53 itself. Mutation of p53 is indicative of highly aggressive cancers and poor prognosis. The vast majority of mutations in p53 occur in its core DNA binding domain (DBD) and result in inactivation of p53 by reducing its thermodynamic stability at physiological temperature.
View Article and Find Full Text PDFThe p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53.
View Article and Find Full Text PDFAkt/protein kinase B is a serine/threonine kinase that plays a critical role in cell survival signaling, and its activation has been linked to tumorigenesis in several human cancers. Up-regulation of Akt, as well as its upstream regulator phosphatidylinositol 3-kinase, has been found in many tumors, and the negative regulator of this pathway, mutated in multiple advanced cancers suppressor (MMAC; also known as phosphatase and tensin homologue deleted on chromosome 10), is a tumor suppressor gene. We have investigated the effects of inhibiting Akt signaling in tumor cells by expression of an Akt kinase-dead mutant in which the two regulatory phosphorylation sites have been mutated to alanines.
View Article and Find Full Text PDFInsulin-like growth factor receptor 1 (IGFR1) plays a crucial role in oncogenic transformation [C. Sell et al., Mol.
View Article and Find Full Text PDF