Background: S-glutathionylation is the formation of disulfide bonds between the tripeptide glutathione and cysteine residues of the protein, protecting them from irreversible oxidation and in some cases causing change in their functions. Regulatory glutathionylation of proteins is a controllable and reversible process associated with cell response to the changing redox status. Prediction of cysteine residues that undergo glutathionylation allows us to find new target proteins, which function can be altered in pathologies associated with impaired redox status.
View Article and Find Full Text PDFMotivation: Modelling with multiple servers that use different algorithms for docking results in more reliable predictions of interaction sites. However, the scoring and comparison of all models by an expert is time-consuming and is not feasible for large volumes of data generated by such modelling.
Results: Quality ASsessment of DOcking Models (QASDOM) Server is a simple and efficient tool for real-time simultaneous analysis, scoring and ranking of data sets of receptor-ligand complexes built by a range of docking techniques.
We calculated interchain contacts on the atomic level for nonredundant set of 4602 protein-protein interfaces using an unbiased Voronoi-Delaune tessellation method, and made 20x20 residue contact matrixes both for homodimers and heterocomplexes. The area of contacts and the distance distribution for these contacts were calculated on both the residue and the atomic levels. We analyzed residue area distribution and showed the existence of two types of interresidue contacts: stochastic and specific.
View Article and Find Full Text PDF