Publications by authors named "Eugene Kuatsjah"

White-rot fungi (WRF) are the most efficient lignin-degrading organisms in nature. However, their capacity to use lignin-related aromatic compounds, such as 4-hydroxybenzoate, as carbon sources has only been described recently. Previously, the hydroxyquinol pathway was proposed for the bioconversion of these compounds in fungi, but gene- and structure-function relationships of the full enzymatic pathway remain uncharacterized in any single fungal species.

View Article and Find Full Text PDF

Biological conversion of lignin from biomass offers a promising strategy for sustainable production of fuels and chemicals. However, aromatic compounds derived from lignin commonly contain methoxy groups, and O-demethylation of these substrates is often a rate-limiting reaction that influences catabolic efficiency. Several enzyme families catalyze aromatic O-demethylation, but they are rarely compared in vivo to determine an optimal biocatalytic strategy.

View Article and Find Full Text PDF

sp. strain SYK-6 is an efficient aromatic catabolic bacterium that can consume all four stereoisomers of 1,2-diguaiacylpropane-1,3-diol (DGPD), which is a ring-opened β-1-type dimer. Recently, LdpA-mediated catabolism of -DGPD was reported in SYK-6, but the catabolic pathway for -DGPD was as yet unknown.

View Article and Find Full Text PDF

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis.

View Article and Find Full Text PDF

Lignin valorization is being intensely pursued via tandem catalytic depolymerization and biological funneling to produce single products. In many lignin depolymerization processes, aromatic dimers and oligomers linked by carbon-carbon bonds remain intact, necessitating the development of enzymes capable of cleaving these compounds to monomers. Recently, the catabolism of -1,2-diguaiacylpropane-1,3-diol (-DGPD), a ring-opened lignin-derived β-1 dimer, was reported in .

View Article and Find Full Text PDF

The transformation of 4-hydroxybenzoate (4-HBA) to protocatechuate (PCA) is catalyzed by flavoprotein oxygenases known as para-hydroxybenzoate-3-hydroxylases (PHBHs). In Pseudomonas putida KT2440 (P. putida) strains engineered to convert lignin-related aromatic compounds to muconic acid (MA), PHBH activity is rate-limiting, as indicated by the accumulation of 4-HBA, which ultimately limits MA productivity.

View Article and Find Full Text PDF

Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data.

View Article and Find Full Text PDF

The mechanism by which molecular oxygen is activated by the organic cofactor pyridoxal phosphate (PLP) for oxidation reactions remains poorly understood. Recent work has identified arginine oxidases that catalyze desaturation or hydroxylation reactions. Here, we investigate a desaturase from the indolmycin pathway.

View Article and Find Full Text PDF

Lignostilbene-α,β-dioxygenases (LSDs) are iron-dependent oxygenases involved in the catabolism of lignin-derived stilbenes. Sphingobium sp. SYK-6 contains eight LSD homologs with undetermined physiological roles.

View Article and Find Full Text PDF

Valorization of lignin, an abundant component of plant cell walls, is critical to enabling the lignocellulosic bioeconomy. Biological funneling using microbial biocatalysts has emerged as an attractive approach to convert complex mixtures of lignin depolymerization products to value-added compounds. Ideally, biocatalysts would convert aromatic compounds derived from the three canonical types of lignin: syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H).

View Article and Find Full Text PDF

Lignostilbene-α,β-dioxygenase A (LsdA) from the bacterium TMY1009 is a nonheme iron oxygenase that catalyzes the cleavage of lignostilbene, a compound arising in lignin transformation, to two vanillin molecules. To examine LsdA's substrate specificity, we heterologously produced the dimeric enzyme with the help of chaperones. When tested on several substituted stilbenes, LsdA exhibited the greatest specificity for lignostilbene ( = 1.

View Article and Find Full Text PDF

A series of alkylated 2,3-dihydroxybiphenyls has been prepared on the gram scale by using an effective Directed ortho Metalation-Suzuki-Miyaura cross-coupling strategy. These compounds have been used to investigate the substrate specificity of the meta-cleavage dioxygenase BphC, a key enzyme in the microbial catabolism of biphenyl. Isolation and characterization of the meta-cleavage products will allow further study of related processes, including the catabolism of lignin-derived biphenyls.

View Article and Find Full Text PDF

Enzymes that catalyze hydroxylation of unactivated carbons normally contain heme and nonheme iron cofactors. By contrast, how a pyridoxal phosphate (PLP)-dependent enzyme could catalyze such a hydroxylation was unknown. Here, we investigate RohP, a PLP-dependent enzyme that converts l-arginine to ( S)-4-hydroxy-2-ketoarginine.

View Article and Find Full Text PDF

Strain SYK-6 of the bacterium sp. catabolizes lignin-derived biphenyl via a -cleavage pathway. In this pathway, LigY is proposed to catalyze the hydrolysis of the -cleavage product (MCP) 4,11-dicarboxy-8-hydroxy-9-methoxy-2-hydroxy-6-oxo-6-phenyl-hexa-2,4-dienoate.

View Article and Find Full Text PDF

In the catabolism of lignin-derived biphenyl by Sphingobium sp. SYK-6, LigZ catalyzes the cleavage of 2,2',3-trihydroxy-3'-methoxy-5,5'-dicarboxybiphenyl (OH-DDVA) to a meta-cleavage product (MCP) identified here as 4,11-dicarboxy-8-hydroxy-9-methoxy-2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate (DCHM-HOPDA). DCHM-HOPDA is transformed nonenzymatically, likely to a lactone (k = 0.

View Article and Find Full Text PDF

Pyridoxal 5'-phosphate (PLP)-dependent enzymes have wide catalytic versatility but are rarely known for their ability to react with oxygen to catalyze challenging reactions. Here, using in vitro reconstitution and kinetic analysis, we report that the indolmycin biosynthetic enzyme Ind4, from Streptomyces griseus ATCC 12648, is an unprecedented O2- and PLP-dependent enzyme that carries out a four-electron oxidation of L-arginine, including oxidation of an unactivated carbon-carbon (C-C) bond. We show that the conjugated product of this reaction, which is susceptible to nonenzymatic deamination, is efficiently intercepted and stereospecifically reduced by the partner enzyme Ind5 to give D-4,5-dehydroarginine.

View Article and Find Full Text PDF

Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential.

View Article and Find Full Text PDF