Publications by authors named "Eugene Izhikevich"

Hybrid spiking models.

Philos Trans A Math Phys Eng Sci

November 2010

I review a class of hybrid models of neurons that combine continuous spike-generation mechanisms and a discontinuous 'after-spike' reset of state variables. Unlike Hodgkin-Huxley-type conductance-based models, the hybrid spiking models have a few parameters derived from the bifurcation theory; instead of matching neuronal electrophysiology, they match neuronal dynamics. I present a method of after-spike resetting suitable for hardware implementation of such models, and a hybrid numerical method for simulations of large-scale biological spiking networks.

View Article and Find Full Text PDF

Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account.

View Article and Find Full Text PDF

The understanding of the structural and dynamic complexity of mammalian brains is greatly facilitated by computer simulations. We present here a detailed large-scale thalamocortical model based on experimental measures in several mammalian species. The model spans three anatomical scales.

View Article and Find Full Text PDF

In Pavlovian and instrumental conditioning, reward typically comes seconds after reward-triggering actions, creating an explanatory conundrum known as "distal reward problem": How does the brain know what firing patterns of what neurons are responsible for the reward if 1) the patterns are no longer there when the reward arrives and 2) all neurons and synapses are active during the waiting period to the reward? Here, we show how the conundrum is resolved by a model network of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA). Although STDP is triggered by nearly coincident firing patterns on a millisecond timescale, slow kinetics of subsequent synaptic plasticity is sensitive to changes in the extracellular DA concentration during the critical period of a few seconds. Random firings during the waiting period to the reward do not affect STDP and hence make the network insensitive to the ongoing activity-the key feature that distinguishes our approach from previous theoretical studies, which implicitly assume that the network be quiet during the waiting period or that the patterns be preserved until the reward arrives.

View Article and Find Full Text PDF

A recent theoretical emphasis on complex interactions within neural systems underlying consciousness has been accompanied by proposals for the quantitative characterization of these interactions. In this article, we distinguish key aspects of consciousness that are amenable to quantitative measurement from those that are not. We carry out a formal analysis of the strengths and limitations of three quantitative measures of dynamical complexity in the neural systems underlying consciousness: neural complexity, information integration, and causal density.

View Article and Find Full Text PDF

We present a minimal spiking network that can polychronize, that is, exhibit reproducible time-locked but not synchronous firing patterns with millisecond precision, as in synfire braids. The network consists of cortical spiking neurons with axonal conduction delays and spike-timing-dependent plasticity (STDP); a ready-to-use MATLAB code is included. It exhibits sleeplike oscillations, gamma (40 Hz) rhythms, conversion of firing rates to spike timings, and other interesting regimes.

View Article and Find Full Text PDF

The functional and biophysical properties of a persistent sodium current (I(NaP)) previously proposed to participate in the generation of subthreshold oscillations and burst discharge in mesencephalic trigeminal sensory neurons (Mes V) were investigated in brain stem slices (rats, p7-p12) using whole cell patch-clamp methods. I(NaP) activated around -76 mV and peaked at -48 mV, with V1/2 of -58.7 mV.

View Article and Find Full Text PDF

We discuss the biological plausibility and computational efficiency of some of the most useful models of spiking and bursting neurons. We compare their applicability to large-scale simulations of cortical neural networks.

View Article and Find Full Text PDF

A neuronal network inspired by the anatomy of the cerebral cortex was simulated to study the self-organization of spiking neurons into neuronal groups. The network consisted of 100 000 reentrantly interconnected neurons exhibiting known types of cortical firing patterns, receptor kinetics, short-term plasticity and long-term spike-timing-dependent plasticity (STDP), as well as a distribution of axonal conduction delays. The dynamics of the network allowed us to study the fine temporal structure of emerging firing patterns with millisecond resolution.

View Article and Find Full Text PDF

We demonstrate that the BCM learning rule follows directly from STDP when pre- and postsynaptic neurons fire uncorrelated or weakly correlated Poisson spike trains, and only nearest-neighbor spike interactions are taken into account.

View Article and Find Full Text PDF

The cusp bifurcation provides one of the simplest routes leading to bistability and hysteresis in neuron dynamics. We show that weakly connected networks of neurons near cusp bifurcations that satisfy a certain adaptation condition have quite interesting and complicated dynamics. First, we prove that any such network can be transformed into a canonical model by an appropriate continuous change of variables.

View Article and Find Full Text PDF

What is the functional significance of generating a burst of spikes, as opposed to a single spike? A dominant point of view is that bursts are needed to increase the reliability of communication between neurons. Here, we discuss the alternative, but complementary, hypothesis: bursts with specific resonant interspike frequencies are more likely to cause a postsynaptic cell to fire than are bursts with higher or lower frequencies. Such a frequency preference might occur at the level of individual synapses because of the interplay between short-term synaptic depression and facilitation, or at the postsynaptic cell level because of subthreshold membrane potential oscillations and resonance.

View Article and Find Full Text PDF

Revealing the role of bursts of action potentials is an important step toward understanding how the neurons communicate. The dominant point of view is that bursts are needed to increase the reliability of communication between neurons [Trends Neurosci. 20 (1997) 38].

View Article and Find Full Text PDF