Tumor oxygenation is a critical parameter influencing the efficacy of cancer therapy. Low levels of oxygen in solid tumor have been recognized as an indicator of malignant progression and metastasis, as well as poor response to chemo- and radiation therapy. Being able to measure oxygenation for an individual's tumor would provide doctors with a valuable way of identifying optimal treatments for patients.
View Article and Find Full Text PDFPurpose: It has been known for over 100 years that tumor hypoxia, a near-universal characteristic of solid tumors, decreases the curative effectiveness of radiation therapy. However, to date, there are no reports that demonstrate an improvement in radiation effectiveness in a mammalian tumor on the basis of tumor hypoxia localization and local hypoxia treatment.
Methods And Materials: For radiation targeting of hypoxic subregions in mouse fibrosarcoma, we used oxygen images obtained using pulse electron paramagnetic resonance pO imaging combined with 3D-printed radiation blocks.
Radiation treatment success and high tumor oxygenation and success have been known to be highly correlated. This suggests that radiation therapy guided by images of tumor regions with low oxygenation, oxygen-guided radiation therapy (OGRT) may be a promising enhancement of cancer radiation treatment. Before applying the technique to human subjects, OGRT needs to be tested in animals, most easily in rodents.
View Article and Find Full Text PDFRapid expansion of tumor cells that outpace existing vasculature essential for nutrient and oxygen support as well as waste removal, correlates with profound changes in the microenvironment including angiogenesis, vasodilation, glucose metabolism, and cell cycle perturbations. Since hypoxic cells are up to three times more radioresistant than normoxic cells, identification of hypoxic populations to predict radiotherapeutic outcome is important. The consequences of hypoxia and activated proteins contribute to radioresistant tumors and radiotherapeutic failure.
View Article and Find Full Text PDFWe report herein a method for the recovery, purification, and application of OX063, a costly, commercially available nontoxic spin probe widely used for electron paramagnetic resonance (EPR) imaging, as well as its corresponding quinone methide (QM) form. This precious probe can be successfully recovered after use in animal model experiments (25-47% recovery from crude lyophilizate with 98.5% purity), even from samples that are >2 years old.
View Article and Find Full Text PDFClinical trials to ameliorate hypoxia as a strategy to relieve the radiation resistance it causes have prompted a need to assay the precise extent and location of hypoxia in tumors. Electron paramagnetic resonance oxygen imaging (EPR O2 imaging) provides a noninvasive means to address this need. To obtain a preclinical proof-of-principle that EPR O2 images could predict radiation control, we treated mouse tumors at or near doses required to achieve 50% control (TCD50).
View Article and Find Full Text PDFThe reduced oxygen in tumors (hypoxia) generates radiation resistance and limits tumor control probability (TCP) at radiation doses without significant normal tissue complication. Modern radiation therapy delivery with intensity-modulated radiation therapy (IMRT) enables complex, high-dose gradient patterns, which avoid sensitive human tissues and organs. EPR oxygen images may allow selection of more resistant parts of a tumor to which to deliver more radiation dose to enhance TCP.
View Article and Find Full Text PDFPurpose: Electron paramagnetic resonance spectroscopy promises quantitative images of important physiologic markers of animal tumors and normal tissues, such as pO(2), pH, and thiol redox status. These parameters of tissue function are conveniently reported by tailored nitroxides. For defining tumor physiology, it is vital that nitroxides are selectively localized in tumors relative to normal tissue.
View Article and Find Full Text PDFPurpose: The authors compare two electron paramagnetic resonance imaging modalities at 250 MHz to determine advantages and disadvantages of those modalities for in vivo oxygen imaging.
Methods: Electron spin echo (ESE) and continuous wave (CW) methodologies were used to obtain three-dimensional images of a narrow linewidth, water soluble, nontoxic oxygen-sensitive trityl molecule OX063 in vitro and in vivo. The authors also examined sequential images obtained from the same animal injected intravenously with trityl spin probe to determine temporal stability of methodologies.
Purpose: Tumor microenvironments show remarkable tumor pO(2) heterogeneity, as seen in prior EPR pO(2) images (EPROI). pO(2) correlation with hypoxia response proteins is frustrated by large rapid pO(2) changes with position.
Procedures: To overcome this limitation, biopsies stereotactically located in the EPROI were used to explore the relationship between vascular endothelial growth factor A (VEGF) concentrations in living mouse tumors and the local EPROI pO(2).
Purpose: Application of in vivo electron paramagnetic resonance (EPR) oxygen imaging (EPROI) to tumors larger than those of mice requires development of both instrumental and medical aspects of imaging.
Methods: 250 MHz EPR oxygen imaging was performed using a loop-gap resonator with a volume exceeding 100 cm3. The paramagnetic spin probe was injected directly into the femoral artery feeding the rabbit leg/tumor.
Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism.
View Article and Find Full Text PDFElectron paramagnetic resonance imaging (EPRI) allows detection and localization of paramagnetic spin probes in vivo and in real time. We have shown that nitroxide spin probes entrapped in the intracellular milieu can be imaged by EPRI. Therefore, with the development of a tumor-targetable vehicle that can efficiently deliver nitroxides into cells, it should be possible to use nitroxide spin probes to label and image cells in a tumor.
View Article and Find Full Text PDFPurpose: Tumor hypoxia has long been known to produce resistance to radiation. In this study, electron paramagnetic resonance (EPR) oxygen imaging was investigated for its power to predict the success of tumor control according to tumor oxygenation level and radiation dose.
Methods And Materials: A total of 34 EPR oxygen images were obtained from the legs of C3H mice bearing 0.
Recent advances in electron paramagnetic resonance (EPR) imaging have made it possible to image, in real time in vivo, cells that have been labeled with nitroxide spin probes. We previously reported that cells can be loaded to high (millimolar) intracellular concentrations with (2,2,5,5-tetramethylpyrrolidin-1-oxyl-3-ylmethyl)amine-N,N-diacetic acid by incubation with the corresponding acetoxymethyl (AM) ester. Furthermore, the intracellular lifetime (t(1/e)) of this nitroxide is 114 min-sufficiently long to permit in vivo imaging studies.
View Article and Find Full Text PDFTumor oxygenation predicts cancer therapy response and malignant phenotype. This has spawned a number of oxymetries. Comparison of different oxymetries is crucial for the validation and understanding of these techniques.
View Article and Find Full Text PDFHyperthermia, as an adjuvant with radiation and chemotherapy, has shown promise in the treatment of cancer. The relevant biological effects of a hyperthermia treatment are both time and temperature-dependent, creating a need for accurate thermometry. We present a novel noninvasive thermometry modality that combines a temperature responsive biopolymer, the elastin-like polypeptide (ELP), and nitroxide to produce an ELP-nitroxide conjugate.
View Article and Find Full Text PDFThis work presents a methodology for obtaining quantitative oxygen concentration images in the tumor-bearing legs of living C3H mice. The method uses high-resolution electron paramagnetic resonance imaging (EPRI). Enabling aspects of the methodology include the use of injectable, narrow, single-line triaryl methyl spin probes and an accurate model of overmodulated spectra.
View Article and Find Full Text PDFElectron paramagnetic resonance imaging (EPRI) promises to provide new insights into the physiology of tissues in health and disease. Understanding the in vivo imaging capability of this new modality requires comparison with other physiologically responsive techniques. Here, an initial comparison between 2D EPR spatial imaging of a narrow single line injectable paramagnetic trityl spin probe and 2D slice-selected carbogen subtraction BOLD MRI is presented.
View Article and Find Full Text PDF