Publications by authors named "Eugene Cho"

Background: Expansive intracranial hematomas (EIH) following traumatic brain injury (TBI) continue to be a public health problem in Uganda. Data is limited regarding the neurosurgical outcomes of TBI patients. This study investigated the neurosurgical outcomes and associated risk factors of EIH among TBI patients at Mulago National Referral Hospital (MNRH).

View Article and Find Full Text PDF

Background And Objectives: Because of high skin cancer risks for young women, it is vital that effective interventions reach and influence this demographic. Visual social media platforms, like Instagram, are popular with young women and are an appropriate intervention site; yet, they also host competing images idealizing tan skin. The present study tested the ability of digital sun-safety interventions to affect self-control-related emotions and visual attention to subsequent tan-ideal images as well as sun-safety attitudes.

View Article and Find Full Text PDF

Metal oxides are intensively used for multilayered optoelectronic devices such as organic light-emitting diodes (OLEDs). Many approaches have been explored to improve device performance by engineering electrical properties. However, conventional methods cannot enable both energy level manipulation and conductivity enhancement for achieving optimum energy band configurations.

View Article and Find Full Text PDF

This study aimed to investigate the anticancer activity of dried-pericarp water extract of fermented C. japonicus (CJ). The dried-pericarp water extracts of CJ were fermented using Aspergillus oryzae and Saccharomyces cerevisiae at 30 °C and 35 °C.

View Article and Find Full Text PDF

Nanograined metal oxides are requisite for diverse applications that use large surface area, such as gas sensors and catalysts. However, nanoscale grains are thermodynamically unstable and tend to coarsen at elevated temperatures. Here, we report effective grain growth suppression in metal oxide nanoribbons annealed at high temperature (900°C) by tuning the metal-to-oxygen ratio and confining the nanoribbons.

View Article and Find Full Text PDF

Practical sensing applications such as real-time safety alerts and clinical diagnoses require sensor devices to differentiate between various target molecules with high sensitivity and selectivity, yet conventional devices such as oxide-based chemo-resistive sensors and metal-based surface-enhanced Raman spectroscopy (SERS) sensors usually do not satisfy such requirements. Here, a label-free, chemo-resistive/SERS multimodal sensor based on a systematically assembled 3D cross-point multifunctional nanoarchitecture (3D-CMA), which has unusually strong enhancements in both "chemo-resistive" and "SERS" sensing characteristics is introduced. 3D-CMA combines several sensing mechanisms and sensing elements via 3D integration of semiconducting SnO nanowire frameworks and dual-functioning Au metallic nanoparticles.

View Article and Find Full Text PDF

Rapid, accurate, and intuitive detection of unknown liquids is greatly important for various fields such as food and drink safety, management of chemical hazards, manufacturing process monitoring, and so on. Here, we demonstrate a highly responsive and selective transparency-switching medium for on-site, visual identification of various liquids. The light scattering–based sensing medium, which is designed to be composed of polymeric interphase voids and hollow nanoparticles, provides an extremely large transmittance window (>95%) with outstanding selectivity and versatility.

View Article and Find Full Text PDF

Although hexagonal boron nitride (BN) nanostructures have recently received significant attention due to their unique physical and chemical properties, their applications have been limited by a lack of processability and poor film quality. In this study, a versatile method to transfer-print high-quality BN films composed of densely stacked BN nanosheets based on a desolvation-induced adhesion switching (DIAS) mechanism is developed. It is shown that edge functionalization of BN sheets and rational selection of membrane surface energy combined with systematic control of solvation and desolvation status enable extensive tunability of interfacial interactions at BN-BN, BN-membrane, and BN-substrate boundaries.

View Article and Find Full Text PDF

Despite highly promising characteristics of three-dimensionally (3D) nanostructured catalysts for the oxygen evolution reaction (OER) in polymer electrolyte membrane water electrolyzers (PEMWEs), universal design rules for maximizing their performance have not been explored. Here we show that woodpile (WP)-structured Ir, consisting of 3D-printed, highly-ordered Ir nanowire building blocks, improve OER mass activity markedly. The WP structure secures the electrochemically active surface area (ECSA) through enhanced utilization efficiency of the extended surface area of 3D WP catalysts.

View Article and Find Full Text PDF
Article Synopsis
  • The article originally featured inaccuracies regarding the description of new species.
  • This corrigendum addresses and rectifies those errors.
  • The corrections enhance the accuracy and reliability of the information presented.
View Article and Find Full Text PDF

The unprecedented pandemic of COVID-19 has impacted many lives and affects the whole healthcare systems globally. In addition to the considerable workload challenges, surgeons are faced with a number of uncertainties regarding their own safety, practice, and overall patient care. This guide has been drafted at short notice to advise on specific issues related to surgical service provision and the safety of minimally invasive surgery during the COVID-19 pandemic.

View Article and Find Full Text PDF

For the last few decades, nanoscale materials and structures have been extensively studied and developed, making a huge impact on human sustainability. For example, the introduction of nanostructures has brought substantial development in electrocatalysts and optical sensing applications. However, there are still remaining challenges that need to be resolved to further improve their performance, reliability, and cost-effectiveness.

View Article and Find Full Text PDF

In this paper, we explore the self-assembly behavior of disk-coil block copolymers (BCPs) confined within a cylinder using molecular dynamics simulations. As functions of the diameter of the confining cylinder and the number of coil beads, concentric lamellar structures are obtained with a different number of alternating disk-rich and coil-rich bilayers. Our paper focuses on the curvature-induced structural behavior in the disk-rich domain of a self-assembled structure, which is investigated by calculating the local density distribution P(r) and the orientational distribution G(r,θ).

View Article and Find Full Text PDF

Background: RAS GTPase-activating protein-binding protein (G3BP1) is an RNA-binding protein that is essential for assembling stress granules. Many functions related to the survival and progression of cancer have been reported. The current study aimed to investigate the role of G3BP1 in radio-sensitisation of cancer cells.

View Article and Find Full Text PDF

Achieving high emission efficiency in solid-state quantum dots (QDs) is an essential requirement for high-performance QD optoelectronics. However, most QD films suffer from insufficient excitation and light extraction efficiencies, along with nonradiative energy transfer between closely adjacent QDs. Herein, we suggest a highly effective strategy to enhance the photoluminescence (PL) of QD composite films through an assembly of QDs and poly(styrene--4-vinylpyridine)) (PS--P4VP) block copolymer (BCP).

View Article and Find Full Text PDF

Paying attention to the rising popularity of virtual assistants (VAs) that offer unique user experiences through voice-centered interaction, this study examined the effects of modality, device, and task differences on perceived human likeness of, and attitudes toward, voice-activated VAs. To do so, a 2 (modality: voice vs. text) × 2 (device: mobile vs.

View Article and Find Full Text PDF

Cluh is a cytosolic protein that is known to specifically bind the mRNAs of nuclear-encoded mitochondrial proteins and play critical roles in mitochondrial biogenesis. Here, we report the role of Cluh in adipogenesis. Our study shows that mRNA expression of Cluh is stimulated during adipogenesis, and that cAMP/Creb signalling increases its transcription.

View Article and Find Full Text PDF

Osteoporosis is caused by an imbalance of osteoclast and osteoblast activities and it is characterized by enhanced osteoclast formation and function. Peptidyl-prolyl cis-trans isomerase never in mitosis A (NIMA)-interacting 1 (Pin1) is a key mediator of osteoclast cell-cell fusion via suppression of the dendritic cell-specific transmembrane protein (DC-STAMP). We found that ,'-1,4-butanediylbis[3-(2-chlorophenyl)acrylamide] (BCPA) inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in a dose-dependent manner without cytotoxicity.

View Article and Find Full Text PDF

Thermal energy storage and release in aliphatic phase-change materials are actively controlled by adding azobenzene-based photo-switches. UV activation of the additives induces supercooling of the composites, allowing for longer thermal storage at lower temperatures. The mechanism of this process is studied by comparing phase change behavior across diverse materials.

View Article and Find Full Text PDF

Background Aims: Irradiation enhances the adhesion between natural killer (NK) cells and target cells by up-regulating intercellular adhesion molecule-1 (ICAM-1) on target cells. Therefore, we investigated the effect of irradiation-induced ICAM-1 expression on human cancer cells on NK cell-mediated cytotoxicity.

Methods: Expression levels of ICAM-1 on the target cell surface before and after irradiation of six human cancer cell lines (HL60, SKBR-3, T47D, HCT-116, U937 and U251) were analyzed by flow cytometry.

View Article and Find Full Text PDF

The antimicrobial peptide HPA3 shows anticancer activity in gastric cancer and leukaemia. However, how HPA3 exerts its anticancer activity, as well as whether it also exhibits activity in other cancers, remains unknown. Therefore, the aim of this study was to evaluate the anticancer activity of HPA3 and its analogues in colon cancer and to elucidate the mechanisms responsible for this activity.

View Article and Find Full Text PDF

Clofazimine, a lipophilic (log P = 7.66) riminophenazine antibiotic approved by the US Food and Drug Administration (FDA) with a good safety record, was recently identified as a lead hit for cryptosporidiosis through a high-throughput phenotypic screen. Cryptosporidiosis requires fast-acting treatment as it leads to severe symptoms which, if untreated, result in morbidity for infants and small children.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn2d75oct96gl31b28mmjnollttjdng2d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once