Publications by authors named "Eugene Bolotin"

The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX) bind Enhancer box (E-box) DNA elements (CANNTG) and have the greatest affinity for the canonical MYC E-box (CME) CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo.

View Article and Find Full Text PDF

HNF4α has been implicated in colitis and colon cancer in humans but the role of the different HNF4α isoforms expressed from the two different promoters (P1 and P2) active in the colon is not clear. Here, we show that P1-HNF4α is expressed primarily in the differentiated compartment of the mouse colonic crypt and P2-HNF4α in the proliferative compartment. Exon swap mice that express only P1- or only P2-HNF4α have different colonic gene expression profiles, interacting proteins, cellular migration, ion transport and epithelial barrier function.

View Article and Find Full Text PDF

The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not.

View Article and Find Full Text PDF

Background: Statins are widely prescribed for lowering LDL-cholesterol (LDLC) levels and risk of cardiovascular disease. There is, however, substantial inter-individual variation in the magnitude of statin-induced LDLC reduction. To date, analysis of individual DNA sequence variants has explained only a small proportion of this variability.

View Article and Find Full Text PDF

Human lymphoblastoid cell lines (LCLs), generated through Epstein-Barr Virus (EBV) transformation of B-lymphocytes (B-cells), are a commonly used model system for identifying genetic influences on human diseases and on drug responses. We have previously used LCLs to examine the cellular effects of genetic variants that modulate the efficacy of statins, the most prescribed class of cholesterol-lowering drugs used for the prevention and treatment of cardiovascular disease. However, statin-induced gene expression differences observed in LCLs may be influenced by their transformation, and thus differ from those observed in native B-cells.

View Article and Find Full Text PDF

Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval.

View Article and Find Full Text PDF

Nuclear receptors (NRs) regulate gene expression by binding specific DNA sequences consisting of AG[G/T]TCA or AGAACA half site motifs in a variety of configurations. However, those motifs/configurations alone do not adequately explain the diversity of NR function in vivo. Here, a systematic examination of DNA binding specificity by protein-binding microarrays (PBMs) of three closely related human NRs--HNF4α, retinoid X receptor alpha (RXRα) and COUPTF2--reveals an HNF4-specific binding motif (H4-SBM), xxxxCAAAGTCCA, as well as a previously unrecognized polarity in the classical DR1 motif (AGGTCAxAGGTCA) for HNF4α, RXRα and COUPTF2 homodimers.

View Article and Find Full Text PDF

Background: Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression.

Results: Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats.

View Article and Find Full Text PDF

The epigenetic activator Mixed lineage leukemia 1 (MLL1) is paramount for embryonic development and hematopoiesis. Here, we demonstrate that the long, noncoding RNA (lncRNA) Mistral (Mira) activates transcription of the homeotic genes Hoxa6 and Hoxa7 in mouse embryonic stem cells (mESC) by recruiting MLL1 to chromatin. The Mira gene is located in the spacer DNA region (SDR) separating Hoxa6 and Hoxa7, transcriptionally silent in mESCs, and activated by retinoic acid.

View Article and Find Full Text PDF

Unlabelled: Hepatocyte nuclear factor 4 alpha (HNF4alpha), a member of the nuclear receptor superfamily, is essential for liver function and is linked to several diseases including diabetes, hemophilia, atherosclerosis, and hepatitis. Although many DNA response elements and target genes have been identified for HNF4alpha, the complete repertoire of binding sites and target genes in the human genome is unknown. Here, we adapt protein binding microarrays (PBMs) to examine the DNA-binding characteristics of two HNF4alpha species (rat and human) and isoforms (HNF4alpha2 and HNF4alpha8) in a high-throughput fashion.

View Article and Find Full Text PDF

Orphan nuclear receptors have been instrumental in identifying novel signaling pathways and therapeutic targets. However, identification of ligands for these receptors has often been based on random compound screens or other biased approaches. As a result, it remains unclear in many cases if the reported ligands are the true endogenous ligands,--i.

View Article and Find Full Text PDF

The core promoter of eukaryotic genes is the minimal DNA region that recruits the basal transcription machinery to direct efficient and accurate transcription initiation. The fraction of human and yeast genes that contain specific core promoter elements such as the TATA box and the initiator (INR) remains unclear and core promoter motifs specific for TATA-less genes remain to be identified. Here, we present genome-scale computational analyses indicating that approximately 76% of human core promoters lack TATA-like elements, have a high GC content, and are enriched in Sp1-binding sites.

View Article and Find Full Text PDF

Entomopathogenic nematodes of the genus Steinernema are lethal parasites of insects that are used as biological control agents of several lepidopteran, dipteran and coleopteran pests. Phylogenetic relationships among 25 Steinernema species were estimated using nucleotide sequences from three genes and 22 morphological characters. Parsimony analysis of 28S (LSU) sequences yielded a well-resolved phylogenetic hypothesis with reliable bootstrap support for 13 clades.

View Article and Find Full Text PDF