Proc (IEEE Int Conf Healthc Inform)
June 2023
The utilization of web search activity for pandemic forecasting has significant implications for managing disease spread and informing policy decisions. However, web search records tend to be noisy and influenced by geographical location, making it difficult to develop large-scale models. While regularized linear models have been effective in predicting the spread of respiratory illnesses like COVID-19, they are limited to specific locations.
View Article and Find Full Text PDFBackground: Real-time air pollution monitoring is a valuable tool for public health and environmental surveillance. In recent years, there has been a dramatic increase in air pollution forecasting and monitoring research using artificial neural networks. Most prior work relied on modeling pollutant concentrations collected from ground-based monitors and meteorological data for long-term forecasting of outdoor ozone (O), oxides of nitrogen, and fine particulate matter (PM).
View Article and Find Full Text PDFThe bioCADDIE dataset retrieval challenge brought together different approaches to retrieval of biomedical datasets relevant to a user’s query, expressed as a text description of a needed dataset. We describe experiments in applying a data-driven, machine learning-based approach to biomedical dataset retrieval as part of this challenge. We report on a series of experiments carried out to evaluate the performance of both probabilistic and machine learning-driven techniques from information retrieval, as applied to this challenge.
View Article and Find Full Text PDFThe Visual Paired Comparison (VPC) task is a recognition memory test that has shown promise for the detection of memory impairments associated with mild cognitive impairment (MCI). Because patients with MCI often progress to Alzheimer's Disease (AD), the VPC may be useful in predicting the onset of AD. VPC uses noninvasive eye tracking to identify how subjects view novel and repeated visual stimuli.
View Article and Find Full Text PDFBioinformatics
October 2004
Motivation: Genes and proteins are often associated with multiple names. More names are added as new functional or structural information is discovered. Because authors can use any one of the known names for a gene or protein, information retrieval and extraction would benefit from identifying the gene and protein terms that are synonyms of the same substance.
View Article and Find Full Text PDF