The primary cilium, a single microtubule-based organelle protruding from the cell surface and critical for neural development, also functions in adult neurons. While some dorsal root ganglion neurons elaborate a primary cilium, whether it is expressed by and functional in nociceptors is unknown. Recent studies have shown the role of Hedgehog, whose canonical signaling is primary cilium dependent, in nociceptor sensitization.
View Article and Find Full Text PDFHyperalgesic priming is a preclinical model of the transition from acute to chronic pain characterized by a leftward shift in the dose-response curve for and marked prolongation of prostaglandin E (PGE)-induced mechanical hyperalgesia, in vivo. In vitro, priming in nociceptors is characterized by a leftward shift in the concentration dependence for PGE-induced nociceptor sensitization. In the present in vitro study we tested the hypothesis that a mu-opioid receptor (MOR) agonist opioid analgesic, morphine, can produce priming by its direct action on nociceptors.
View Article and Find Full Text PDFWhile opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4.
View Article and Find Full Text PDFWhile opioids remain amongst the most effective treatments for moderate-to-severe pain, their substantial side effect profile remains a major limitation to broader clinical use. One such side effect is opioid-induced hyperalgesia (OIH), which includes a transition from opioid-induced analgesia to pain enhancement. Evidence in rodents supports the suggestion that OIH may be produced by the action of opioids at Toll-like Receptor 4 (TLR4) either on immune cells that, in turn, produce pronociceptive mediators to act on nociceptors, or by a direct action at nociceptor TLR4.
View Article and Find Full Text PDFProgress in the development of effective chemotherapy is producing a growing population of patients with acute and chronic painful chemotherapy-induced peripheral neuropathy (CIPN), a serious treatment-limiting side effect for which there is currently no US Food and Drug Administration-approved treatment. CIPNs induced by diverse classes of chemotherapy drugs have remarkably similar clinical presentations, leading to the suggestion they share underlying mechanisms. Sensory neurons share with immune cells the ability to detect damage associated molecular patterns (DAMPs), molecules produced by diverse cell types in response to cellular stress and injury, including by chemotherapy drugs.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN) is a debilitating, treatment-limiting, side-effect of several classes of chemotherapy drugs. While negatively impacting oncology patients' quality of life, chemotherapy-induced large-fiber (LF) neuropathy is amongst the least well understood components of CIPN, and one for which there is currently no established therapy. Preliminary clinical observations have led to the suggestion that Duloxetine, which is used for the treatment of pain associated with small-fiber CIPN (SF-CIPN), may be effective against LF-CIPN.
View Article and Find Full Text PDFHigh molecular weight hyaluronan (HMWH), a well-established treatment for osteoarthritis pain, is anti-hyperalgesic in preclinical models of inflammatory and neuropathic pain. HMWH-induced anti-hyperalgesia is mediated by its action at cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, which can signal via phosphoinositide 3-kinase (PI3K), a large family of kinases involved in diverse cell functions. We demonstrate that intrathecal administration of an oligodeoxynucleotide (ODN) antisense to mRNA for PI3Kγ (a Class I PI3K isoform) expressed in dorsal root ganglia (DRGs), and intradermal administration of a PI3Kγ-selective inhibitor (AS605240), markedly attenuates HMWH-induced anti-prostaglandin E (PGE) hyperalgesia, in male and female rats.
View Article and Find Full Text PDFClinical µ-opioid receptor (MOR) agonists produce hyperalgesic priming, a form of maladaptive nociceptor neuroplasticity, resulting in pain chronification. We have established an model of opioid-induced hyperalgesic priming (OIHP), in male rats, to identify nociceptor populations involved and its maintenance mechanisms. OIHP was induced by systemic administration of fentanyl and confirmed by prolongation of prostaglandin E (PGE) hyperalgesia.
View Article and Find Full Text PDFWe evaluated the mechanism by which high-molecular-weight hyaluronan (HMWH) attenuates nociceptor sensitization, in the setting of inflammation. HMWH attenuated mechanical hyperalgesia induced by the inflammatory mediator prostaglandin E2 (PGE) in male and female rats. Intrathecal administration of an oligodeoxynucleotide antisense (AS-ODN) to mRNA for cluster of differentiation 44 (CD44), the cognate hyaluronan receptor, and intradermal administration of A5G27, a CD44 receptor antagonist, both attenuated antihyperalgesia induced by HMWH.
View Article and Find Full Text PDFOpioid-induced hyperalgesia (OIH) is a serious adverse event produced by opioid analgesics. Lack of an model has hindered study of its underlying mechanisms. Recent evidence has implicated a role of nociceptors in OIH.
View Article and Find Full Text PDFSystemic fentanyl induces hyperalgesic priming, long-lasting neuroplasticity in nociceptor function characterized by prolongation of inflammatory mediator hyperalgesia. To evaluate priming at both nociceptor terminals, we studied, in male Sprague Dawley rats, the effect of local administration of agents that reverse type I (protein translation) or type II [combination of Src and mitogen-activated protein kinase (MAPK)] priming. At the central terminal, priming induced by systemic, intradermal, or intrathecal fentanyl was reversed by the combination of Src and MAPK inhibitors, but at the peripheral terminal, it was reversed by the protein translation inhibitor.
View Article and Find Full Text PDFWe studied, in male Sprague Dawley rats, the role of the cognate hyaluronan receptor, CD44 signaling in the antihyperalgesia induced by high molecular weight hyaluronan (HMWH). Low molecular weight hyaluronan (LMWH) acts at both peptidergic and nonpeptidergic nociceptors to induce mechanical hyperalgesia that is prevented by intrathecal oligodeoxynucleotide antisense to CD44 mRNA, which also prevents hyperalgesia induced by a CD44 receptor agonist, A6. Ongoing LMWH and A6 hyperalgesia are reversed by HMWH.
View Article and Find Full Text PDFHyperalgesic priming, a model of pain chronification in the rat, is mediated by ryanodine receptor-dependent calcium release. Although ryanodine induces priming in both sexes, females are 5 orders of magnitude more sensitive, by an estrogen receptor α (EsRα)-dependent mechanism. An inositol 1,4,5-triphosphate (IP) receptor inhibitor prevented the induction of priming by ryanodine.
View Article and Find Full Text PDFHyperalgesic priming, an estrogen dependent model of the transition to chronic pain, produced by agonists at receptors that activate protein kinase C epsilon (PKCε), occurs in male but not in female rats. However, activation of second messengers downstream of PKCε, such as the ryanodine receptor, induces priming in both sexes. Since estrogen regulates intracellular calcium, we investigated the interaction between estrogen and ryanodine in the susceptibility to develop priming in females.
View Article and Find Full Text PDFBackground: Previous studies have shown that increased excitability of capsaicin-sensitive DRG neurons and thermal hyperalgesia in rats with short-term (2-4 weeks) streptozotocin-induced diabetes is mediated by upregulation of T-type Ca(2+) current. In longer-term diabetes (after the 8th week) thermal hyperalgesia is changed to hypoalgesia that is accompanied by downregulation of T-type current in capsaicin-sensitive small-sized nociceptors. At the same time pain symptoms of diabetic neuropathy other than thermal persist in STZ-diabetic animals and patients during progression of diabetes into later stages suggesting that other types of DRG neurons may be sensitized and contribute to pain.
View Article and Find Full Text PDFT-type Ca²⁺ channels are known as important participants of nociception and their remodeling contributes to diabetes-induced alterations of pain sensation. In this work we have established that about 30% of rat nonpeptidergic thermal C-type nociceptive (NTCN) neurons of segments L4-L6 express a slow T-type Ca²⁺ current (T-current) while a fast T-current is expressed in the other 70% of these neurons. Streptozotocin-induced diabetes in young rats resulted in thermal hyperalgesia, hypoalgesia, or normalgesia 5-6 weeks after the induction.
View Article and Find Full Text PDFStreptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8weeks of diabetes development. Here we found that 6-7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception.
View Article and Find Full Text PDF