Publications by authors named "Eugen Uhlmann"

The in vivo potency of antisense oligonucleotides (ASO) has been significantly increased by reducing their length to 8-15 nucleotides and by the incorporation of high affinity RNA binders such as 2', 4'-bridged nucleic acids (also known as locked nucleic acid or LNA, and 2',4'-constrained ethyl [cET]). We now report the development of a novel ASO design in which such short ASO monomers to one or more targets are co-synthesized as homo- or heterodimers or multimers via phosphodiester linkers that are stable in plasma, but cleaved inside cells, releasing the active ASO monomers. Compared to current ASOs, these multimers and multi-targeting oligonucleotides (MTOs) provide increased plasma protein binding and biodistribution to liver, and increased in vivo efficacy against single or multiple targets with a single construct.

View Article and Find Full Text PDF

Activation of TLR7 and TLR9 by endogenous RNA- or DNA-containing ligands, respectively, is thought to contribute to the complicated pathophysiology of systemic lupus erythematosus (SLE). These ligands induce the release of type-I interferons by plasmacytoid dendritic cells and autoreactive antibodies by B-cells, both responses being key events in perpetuating SLE. We recently described the development of inhibitory oligonucleotides (INH-ODN), which are characterized by a phosphorothioate backbone, a CC(T)XXX3-5GGG motif and a chemical modification of the G-quartet to avoid the formation of higher order structures via intermolecular G-tetrads.

View Article and Find Full Text PDF

Inhibitory TLR7 and/or TLR9 oligonucleotides (inhibitory oligonucleotide [INH-ODN]) are characterized by a phosphorothioate backbone and a CC(T)XXX₃₋₅GGG motif, respectively. INH-ODN 2088 is a prototypic member of this class of INH-ODN and acts as a TLR7 and TLR9 antagonist. It contains a G quadruple that leads to higher order structures by the formation of G tetrads.

View Article and Find Full Text PDF

Small noncoding RNAs (ncRNAs) have been shown to guide epigenetic silencing complexes to target loci in human cells. When targeted to gene promoters, these small RNAs can lead to long-term stable epigenetic silencing of gene transcription. To date, small RNAs have been shown to modulate transcriptional gene silencing (TGS) of human immunodeficiency virus type 1 (HIV-1) as well as several other disease-related genes, but it has remained unknown as to what extent particular chemistries can be used to generate single-stranded backbone-modified oligonucleotides that are amenable to this form of gene targeting and regulation.

View Article and Find Full Text PDF

The toll-like receptors (TLRs) 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. Certain GU- or AU-rich RNA sequences were described to differentiate between human TLR7- and TLR8-mediated immune effects. Those single-stranded RNA molecules require endosomal delivery for stabilization against ribonucleases.

View Article and Find Full Text PDF

Antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) promise specific correction of disease-causing gene expression. Therapeutic implementation, however, has been forestalled by poor delivery to the appropriate tissue, cell type, and subcellular compartment. Topical administration is considered to circumvent these issues.

View Article and Find Full Text PDF

Unmethylated deoxycytidyl-deoxyguanosin dinucleotide (CpG)-containing oligodeoxynucleotides (ODNs) have been well characterized as agonists for Toll-like receptor 9. We here describe a new class of CpG ODNs, the so-called P-Class, which combines preferred properties of known CpG ODN classes. This P-Class contains two palindromic sequences, enabling it to form concatamers, multimeric units, where each molecule is bound via Watson-Crick basepairing to a second and a third palindrome.

View Article and Find Full Text PDF

Capillary gel electrophoresis (CGE) is a widely used method for quantification of oligonucleotide-based drugs, such as CpG oligodeoxynucleotides (CpG ODN), aptamers and small interfering ribonucleic acids (siRNAs) that allows accurate quantification of parent compound as well as metabolites. Stable secondary structure formation of these molecules frequently prevents analysis by conventional CGE methods and impedes pharmacokinetic assessment. Herein, we describe development of a CGE method for identification and quantification of complex mixtures of secondary structure forming GC-rich ODN in biological samples at dose levels of 0.

View Article and Find Full Text PDF

Synthetic oligodeoxynucleotides containing unmethylated deoxycytidylyl-deoxyguanosine dinucleotide (CpG) motifs are able to stimulate potent immune responses through a signaling pathway involving Toll-like receptor 9 (TLR9). We have investigated the structure-activity relationship (SAR) of base-modified CpG oligonucleotides with TLR9 by measuring TLR9 activation by 20-mer oligonucleotides having just a single human recognition motif (5'-GTCGTT-3') in functional cell-based TLR9 assays. Substitution of guanine by hypoxanthine and 6-thioguanine resulted in activity similar to the unmodified parent molecule, whereas purine, 2-aminopurine, 2,6-diaminopurine, and 8-oxo-7,8-dihydroguanine substitution resulted in approximately 40-60 % reduction in activity, and 7-deazaguanine substitution led to the strongest (80 %) reduction in TLR9 stimulation.

View Article and Find Full Text PDF

Suppression of telomerase activity in tumor cells has been considered as a new anticancer strategy. Here, we present chimeric oligonucleotides (chimeric ODNs) as a new type of telomerase inhibitor that contains differently modified oligomers to address two different sites of telomerase: the RNA template and a suggested protein motif. We have shown previously that phosphorothioate-modified oligonucleotides (PS ODNs) interact in a length-dependent rather than in a sequence-dependent manner, presumably with the protein part of the primer-binding site of telomerase, causing strong inhibition of telomerase.

View Article and Find Full Text PDF

To evaluate pharmacokinetics (PK) and biodistribution, CPG 7909, a 24-mer immunostimulatory fully phosphorothioated oligodeoxynucleotide (PS-ODN), was administered by subcutaneous injection at 2, 5 and 12.5mg/kg to mice and at 9mg/kg to rats. Parent compound and metabolites were isolated from plasma and tissues and quantified by capillary gel electrophoresis with UV detection (CGE-UV) and molecular masses were determined by matrix-assisted-laser-desorption-ionization time of flight detection (MALDI-TOF).

View Article and Find Full Text PDF

Synthetic oligodeoxynucleotides (ODN) containing unmethylated deoxycytosine-deoxyguanosine (CpG) motifs are very potent inducers of the innate immune system, mimicking the effects of bacterial DNA. CpG ODN are recognized by Toll-like receptor 9 (TLR9). Three classes of TLR9 agonists have been described: B-Class CpG ODN that induce strong B- and NK-cell activation and A-Class ODN that induce very high levels of IFN-alpha by plasmacytoid dendritic cells.

View Article and Find Full Text PDF

Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have been shown to possess immune modulatory capacities.

View Article and Find Full Text PDF

Some immune cells recognize distinct molecular structures present in pathogens through specific pattern recognition receptors that are able to distinguish prokaryotic DNA from vertebrate DNA. The detection of invading microbial DNA is based on the recognition of unmethylated deoxycytidyl-deoxyguanosin dinucleotide (CpG) motifs. Synthetic oligonucleotides (ODNs) containing these CpG motifs are able to activate both innate and acquired immune responses through a signaling pathway involving Toll-like receptor 9 (TLR9).

View Article and Find Full Text PDF

The astonishing discovery that peptide nucleic acids (PNAs, B=nucleobase), in spite of their drastic structural difference to natural DNA, are better nucleic acid mimetics than many other oligonucleotides has resulted in an explosion of research into this class of compounds. The synthesis, physical properties, and biological interactions of PNAs as well as their chimeras with DNA and RNA are summarized here.

View Article and Find Full Text PDF