Despite recognizing the importance of genetic improvement in the production of barley grains, little information is available on the contribution of phenological development to the genetic improvement of Brazilian barley. Field experiments were carried out between 2011 to 2013, in the absence of biotic and abiotic stresses and with preventive lodging control. Five two-rowed spring barley cultivars, released between 1968 and 2008, were evaluated.
View Article and Find Full Text PDFThis study investigated the fungal diversity in Brazilian barley samples, focusing on the Fusarium sambucinum species complex and the presence of multiple mycotoxins: aflatoxins B1, B2, G1, G2 beauvericin (BEA), enniatins (ENNs) A, A1, B, and B1, deoxynivalenol (DON), fumonisins (FB) B1 and B2, HT-2 and T-2 toxins, nivalenol (NIV) and ochratoxin A (OTA) from two different regions, São Paulo (SP) and Rio Grande do Sul (RS). The majority of the isolates belonged to the Fusarium sambucinum species complex (FSAMSC), with F. graminearum s.
View Article and Find Full Text PDFThe barley HvAACT1 gene codes for a citrate transporter associated with tolerance to acidic soil. In this report, we describe a single nucleotide polymorphism (SNP) in the HvAACT1 coding region that was detected as T-1,198 (in genotypes with lower root growth on acidic soil) or G-1,198 (greater root growth) and resulted in a single amino acid change (L/V-172). Molecular dynamic analysis predicted that HvAACT1 proteins with L or V-172 were stable, although the substitution led to structural changes within the protein.
View Article and Find Full Text PDF