Background: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating.
View Article and Find Full Text PDFMotivation: In the modern era of genomic research, the scientific community is witnessing an explosive growth in the volume of published findings. While this abundance of data offers invaluable insights, it also places a pressing responsibility on genetic professionals and researchers to stay informed about the latest findings and their clinical significance. Genomic variant interpretation is currently facing a challenge in identifying the most up-to-date and relevant scientific papers, while also extracting meaningful information to accelerate the process from clinical assessment to reporting.
View Article and Find Full Text PDFHepatitis C virus (HCV)-associated diffuse large B-cell lymphoma (DLBCL) displays peculiar clinicopathological characteristics, but its molecular landscape is not fully elucidated. In this study, we investigated the clinicopathological and molecular features of 54 patients with HCV-associated DLBCL. The median age was 71 years.
View Article and Find Full Text PDFBackground: A major obstacle faced by rare disease families is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years, and causal variants are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant research study on the utility of genome sequencing (GS) for diagnosis and gene discovery.
View Article and Find Full Text PDFSystematic studies of germ line genetic predisposition to myeloid neoplasms in adult patients are still limited. In this work, we performed germ line and somatic targeted sequencing in a cohort of adult patients with hypoplastic bone marrow (BM) to study germ line predisposition variants and their clinical correlates. The study population included 402 consecutive adult patients investigated for unexplained cytopenia and reduced age-adjusted BM cellularity.
View Article and Find Full Text PDFThe incidence and prognosis of clonal hematopoiesis in patients with isolated neutropenia among patients with idiopathic cytopenia of undetermined significance (ICUS), known as ICUS-N or chronic idiopathic neutropenia (CIN) patients, is poorly defined. The current study sought to investigate the frequency and clinical significance of mutations of genes implicated in myeloid malignancies using next-generation sequencing in patients with CIN (n = 185) with a long follow-up. We found that 21 (11.
View Article and Find Full Text PDFSomatic mutations in splicing factor genes frequently occur in myeloid neoplasms. While SF3B1 mutations are associated with myelodysplastic syndromes (MDS) with ring sideroblasts, SRSF2 mutations are found in different disease categories, including MDS, myeloproliferative neoplasms (MPN), myelodysplastic/myeloproliferative neoplasms (MDS/MPN), and acute myeloid leukemia (AML). To identify molecular determinants of this phenotypic heterogeneity, we explored molecular and clinical features of a prospective cohort of 279 SRSF2-mutated cases selected from a population of 2663 patients with myeloid neoplasms.
View Article and Find Full Text PDFBackground: Protein kinases are enzymes controlling different cellular functions. Genetic alterations often result in kinase dysregulation, making kinases a very attractive class of druggable targets in several human diseases. Existing approved drugs still target a very limited portion of the human 'kinome', demanding a broader functional knowledge of individual and co-expressed kinase patterns in physiologic and pathologic settings.
View Article and Find Full Text PDFWe analyzed and CXCR4 mutation status of 260 patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance using allele-specific real time quantitative polymerase chain reaction and Sanger sequencing, respectively. A subgroup of 119 patients was further studied with next-generation sequencing of 11 target genes (, , , , , , , , , , and ). (L265P) was found at diagnosis in 91% of patients with Waldenström macroglobulinemia and in 60% of patients with IgM monoclonal gammopathy of undetermined significance using allele-specific polymerase chain reaction analysis.
View Article and Find Full Text PDFBackground: Arthropod-borne viruses (arboviruses) transmitted by mosquito vectors cause many important emerging or resurging infectious diseases in humans including dengue, chikungunya and Zika. Understanding the co-evolutionary processes among viruses and vectors is essential for the development of novel transmission-blocking strategies. Episomal viral DNA fragments are produced from arboviral RNA upon infection of mosquito cells and adults.
View Article and Find Full Text PDFAmong the scientific challenges posed by complex diseases with a strong genetic component, two stand out. One is unveiling the role of rare and common genetic variants; the other is the design of classification models to improve clinical diagnosis and predictive models for prognosis and personalized therapies. In this paper, we present a data fusion framework merging gene, domain, pathway and protein-protein interaction data related to a next generation sequencing epilepsy gene panel.
View Article and Find Full Text PDFBackground: Precision medicine requires the tight integration of clinical and molecular data. To this end, it is mandatory to define proper technological solutions able to manage the overwhelming amount of high throughput genomic data needed to test associations between genomic signatures and human phenotypes. The i2b2 Center (Informatics for Integrating Biology and the Bedside) has developed a widely internationally adopted framework to use existing clinical data for discovery research that can help the definition of precision medicine interventions when coupled with genetic data.
View Article and Find Full Text PDFBackground: While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data can be accurately rendered to medically actionable reports within a time window of hours and at scales of economy in the 10's of dollars.
Results: We take a step towards addressing this challenge, by using COSMOS, a cloud-enabled workflow management system, to develop GenomeKey, an NGS whole genome analysis workflow.