Neuroglial precursor cells (NPC) possess immune-modulatory properties by which they prevent immune-mediated injury in experimental autoimmune encephalomyelitis (EAE). It is unclear whether cell transplantation in a clinical-relevant setup induces ongoing therapeutic effects in a chronic-active model of progressive multiple sclerosis (MS). We examined whether human embryonic stem cell (hESC)-derived NPCs inhibit progressive EAE in Biozzi AB/H mice, manifesting with chronic-active neuroinflammation and demyelinated plaques.
View Article and Find Full Text PDFThe beneficial effect of mesenchymal stem cells (MSCs) on wound healing is mostly attributed to a trophic effect that promotes angiogenesis. Whether MSCs can contribute to the formation of new blood vessels by direct differentiation is still controversial. Pelvic floor dysfunction (PFD) is a group of disorders that negatively affect the quality of women's lives.
View Article and Find Full Text PDFIn the pMN domain of the spinal cord, Notch signaling regulates the balance between motor neuron differentiation and maintenance of the progenitor state for later oligodendrocyte differentiation. Here, we sought to study the role of Notch signaling in regulation of the switch from the pMN progenitor state to differentiated motor neurons in a human model system. Human embryonic stem cells (hESCs) were directed to differentiate to pMN-like progenitor cells by the inductive action of retinoic acid and a Shh agonist, purmorphamine.
View Article and Find Full Text PDFDysfunction and loss of retinal pigment epithelium (RPE) leads to degeneration of photoreceptors in age-related macular degeneration and subtypes of retinitis pigmentosa. Human embryonic stem cells (hESCs) may serve as an unlimited source of RPE cells for transplantation in these blinding conditions. Here we show the directed differentiation of hESCs toward an RPE fate under defined culture conditions.
View Article and Find Full Text PDFBackground/aims: microRNAs (miRNAs) are small noncoding RNAs that regulate cognate mRNAs post-transcriptionally. Human embryonic stem cells (hESC), which exhibit the characteristics of pluripotency and self-renewal, may serve as a model to study the role of miRNAs in early human development. We aimed to determine whether endodermally-differentiated hESC demonstrate a unique miRNA expression pattern, and whether overexpression of endoderm-specific miRNA may affect hESC differentiation.
View Article and Find Full Text PDFMany genes associated with CpG islands undergo de novo methylation in cancer. Studies have suggested that the pattern of this modification may be partially determined by an instructive mechanism that recognizes specifically marked regions of the genome. Using chromatin immunoprecipitation analysis, here we show that genes methylated in cancer cells are specifically packaged with nucleosomes containing histone H3 trimethylated on Lys27.
View Article and Find Full Text PDFHyperinsulinism of infancy is a genetically heterogeneous disease characterized by dysregulation of insulin secretion resulting in severe hypoglycemia. To date, mutations in five different genes, the sulfonylurea receptor (SUR1, ABCC8), the inward rectifying potassium channel (K(IR)6.2, KCNJ11), glucokinase (GCK), glutamate dehydrogenase (GLUD1), and short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD), have been implicated.
View Article and Find Full Text PDFThe Wnt pathway controls numerous developmental processes via the beta-catenin-TCF/LEF transcription complex. Deregulation of the pathway results in the aberrant accumulation of beta-catenin in the nucleus, often leading to cancer. Normally, cytoplasmic beta-catenin associates with APC and axin and is continuously phosphorylated by GSK-3beta, marking it for proteasomal degradation.
View Article and Find Full Text PDFbeta-TrCP/E3RS (E3RS) is the F-box protein that functions as the receptor subunit of the SCF(beta-TrCP) ubiquitin ligase (E3). Surprisingly, although its two recognized substrates, IkappaB(alpha) and beta-catenin, are present in the cytoplasm, we have found that E3RS is located predominantly in the nucleus. Here we report the isolation of the major E3RS-associated protein, hnRNP-U, an abundant nuclear phosphoprotein.
View Article and Find Full Text PDF