Publications by authors named "Ettayebi K"

Article Synopsis
  • Human noroviruses (HuNoVs) are key contributors to diarrhea outbreaks worldwide, and studying them was difficult due to a lack of effective culture methods.
  • Recent advancements in cultivating various HuNoV strains in human intestinal enteroids (HIEs) have greatly improved research into their replication and disease mechanisms.
  • The research showed that different types of HIEs, particularly those from small intestines and genetically modified lines, have varying levels of susceptibility to HuNoV infection, revealing insights into how these viruses affect human health.
View Article and Find Full Text PDF
Article Synopsis
  • Human noroviruses (HuNoVs) are RNA viruses responsible for acute gastroenteritis, and many strains, like GII.3, require bile acids (BA) for infection in intestinal cells.
  • The study found that inhibiting the S1PR2 receptor reduces GII.3 infection, indicating that this receptor plays a crucial role in the infection process across different strains and segments of the small intestine.
  • Results showed that while GII.3 and other BA-dependent strains rely on S1PR2 for infection, the GII.4 strain does not, highlighting strain-specific mechanisms in HuNoV infection.
View Article and Find Full Text PDF

Background: The in vitro cultivation of human noroviruses allows a comparison of antibody levels measured in neutralization and histo-blood group antigen (HBGA)-blocking assays.

Methods: Serum samples collected during the evaluation of an investigational norovirus vaccine (HIL-214 [formerly TAK-214]) were assayed for neutralizing antibody levels against the vaccine's prototype Norwalk virus/genogroup I, genotype 1 (GI.1) (P1) virus strain.

View Article and Find Full Text PDF

In vitro models, such as primary cells and continuous cell lines routinely used for evaluating drug candidates, have limitations in their translational relevance to human diseases. Organotypic cultures are increasingly being used to assess therapeutics for various cancers and infectious diseases. Monitoring drug cytotoxicity in cell cultures is crucial in drug development, and several commercially available kits for cytotoxicity assessment offer distinct advantages and limitations.

View Article and Find Full Text PDF

Unlabelled: Human noroviruses (HuNoVs) are a significant cause of epidemic and sporadic acute gastroenteritis worldwide. The lack of a reproducible culture system hindered the study of HuNoV replication and pathogenesis for almost a half-century. This barrier was overcome with our successful cultivation of multiple HuNoV strains in human intestinal enteroids (HIEs), which has significantly advanced HuNoV research.

View Article and Find Full Text PDF
Article Synopsis
  • Human noroviruses (HuNoVs) are diverse RNA viruses that cause viral gastroenteritis, with some strains needing bile acids (BA) for infection, while others, like the pandemic GII.4, do not.
  • In this study, the researchers examined the role of the G-protein coupled receptor S1PR2 in the infection process of various HuNoV strains, discovering that inhibiting S1PR2 reduced the infection of BA-dependent strains but not BA-independent strains like GII.4.
  • The findings suggest that BA-dependent HuNoVs use S1PR2 activation to infect different segments of the small intestine, highlighting the complexity of norovirus infections and the potential for strain-specific targeting in treatment.
View Article and Find Full Text PDF

Acute gastroenteritis caused by human noroviruses (HuNoVs) is a significant global health and economic burden and is without licensed vaccines or antiviral drugs. The GII.4 HuNoV causes most epidemics worldwide.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation.

View Article and Find Full Text PDF

A GII.2 outbreak in an efficacy study of a bivalent virus-like particle norovirus vaccine, TAK-214, in healthy US adults provided an opportunity to examine GII.4 homotypic vs GII.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within three days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation.

View Article and Find Full Text PDF

Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection.

View Article and Find Full Text PDF

Globally, most cases of gastroenteritis are caused by pandemic GII.4 human norovirus (HuNoV) strains with no approved therapies or vaccines available. The cellular pathways that these strains exploit for cell entry and internalization are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that two strains of human norovirus can stay infectious for weeks when in seawater.
  • This study used human intestinal enteroids to investigate the virus's behavior in a marine environment.
  • The findings could help us better understand how norovirus survives in coastal areas and affects shellfish safety.
View Article and Find Full Text PDF

Human norovirus (HuNoV) is the leading cause of epidemic and sporadic acute gastroenteritis worldwide. HuNoV transmission occurs predominantly by direct person-to-person contact, and its health burden is associated with poor hand hygiene and a lack of effective antiseptics and disinfectants. Specific therapies and methods to prevent and control HuNoV spread previously were difficult to evaluate because of the lack of a cell culture system to propagate infectious virus.

View Article and Find Full Text PDF

Background: Immunocompromised individuals can become chronically infected with norovirus, but effective antiviral therapies are not yet available.

Methods: Treatments with nitazoxanide, ribavirin, interferon alpha-2a, and nasoduodenally administered immunoglobulins were evaluated sequentially in an immunocompromised patient chronically infected with norovirus. In support, these components were also applied to measure norovirus inhibition in intestinal enteroid cultures in vitro.

View Article and Find Full Text PDF

The rational development of norovirus vaccine candidates requires a deep understanding of the antigenic diversity and mechanisms of neutralization of the virus. Here, we isolate and characterize a panel of broadly cross-reactive naturally occurring human monoclonal IgMs, IgAs and IgGs reactive with human norovirus (HuNoV) genogroup I or II (GI or GII). We note three binding patterns and identify monoclonal antibodies (mAbs) that neutralize at least one GI or GII HuNoV strain when using a histo-blood group antigen (HBGA) blocking assay.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of epidemic and sporadic acute gastroenteritis worldwide. We previously demonstrated human intestinal stem cell-derived enteroids (HIEs) support cultivation of several HuNoV strains. However, HIEs did not support virus replication from every HuNoV-positive stool sample, which led us to test and optimize new medium conditions, identify characteristics of stool samples that allow replication, and evaluate consistency of replication over time.

View Article and Find Full Text PDF

Stem cell-derived, organotypic models, known as organoids, have emerged as superior alternatives to traditional cell culture models due to their unparalleled ability to recreate complex physiological and pathophysiological processes. For this reason, they are attractive targets of tissue-engineering efforts, as constructs that include organoid technology would be expected to better simulate the many functions of the desired tissue or organ. While the 3D spheroidal architecture that is the default architecture of most organoid models may be preferred for some applications, 2D monolayer arrangements remain the preferred organization for many applications in tissue engineering.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of viral gastroenteritis worldwide; yet currently, no vaccines or FDA-approved antiviral drugs are available to counter these pathogens. To understand HuNoV biology and the epithelial response to infection, we performed transcriptomic analyses, RT-qPCR, CRISPR-Cas9 modification of human intestinal enteroid (HIE) cultures, and functional studies with two virus strains (a pandemic GII.4 and a bile acid-dependent GII.

View Article and Find Full Text PDF

Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) are the leading cause of nonbacterial gastroenteritis worldwide. Histo-blood group antigen (HBGA) expression is an important susceptibility factor for HuNoV infection based on controlled human infection models and epidemiologic studies that show an association of secretor status with infection caused by several genotypes. The fucosyltransferase 2 gene () affects HBGA expression in intestinal epithelial cells; secretors express a functional FUT2 enzyme, while nonsecretors lack this enzyme and are highly resistant to infection and gastroenteritis caused by many HuNoV strains.

View Article and Find Full Text PDF

Human noroviruses (HuNoVs) cause sporadic and epidemic outbreaks of gastroenteritis in all age groups worldwide. We previously reported that stem cell-derived human intestinal enteroid (HIE) cultures support replication of multiple HuNoV strains and that some strains (e.g.

View Article and Find Full Text PDF

Background: The development of an in vitro cultivation system for human noroviruses allows the measurement of neutralizing antibody levels.

Methods: Serum neutralizing antibody levels were determined using a GII.4/Sydney/2012-like virus in human intestinal enteroids in samples collected before and 4 weeks after administration of an investigational norovirus vaccine and were compared with those measured in histo-blood group antigen (HBGA)-blocking assays.

View Article and Find Full Text PDF

Noroviruses, in the genus , are a significant cause of viral gastroenteritis in humans and animals. For almost 50 years, the lack of a cultivation system for human noroviruses (HuNoVs) was a major barrier to understanding virus biology and the development of effective antiviral strategies. This review presents a historical perspective of the development of a cultivation system for HuNoVs in human intestinal epithelial cell cultures.

View Article and Find Full Text PDF