Publications by authors named "Etsuo Kokufuta"

Electrophoretic behavior was studied for N-isopropylacrylamide (NIPA) microgels, into which different amounts of poly(acrylic acid) (PAAc) were physically entrapped. Copolymer microgels of NIPA with acrylic acid (AAc) were also studied as a control. Electrophoretic mobility was measured in 0.

View Article and Find Full Text PDF

We synthesized the glutaraldehyde cross-linked hydrogels using four kinds of poly(lysine)s (PLs) and measured the equilibrium swelling ratio (Q) as a function of pH. Also measured was the temperature change of Q at a fixed pH (11.6) in the absence and presence of additives (LiBr, methanol and urea) that affect the secondary structure of PLs.

View Article and Find Full Text PDF

This work aims to provide a basic understanding of the water dispersibility of a 1:1 stoichiometric polyelectrolyte complex (SPEC) in water in the absence of low-molecular-weight salts. We studied the complexation of a linear polyanion, potassium poly(vinyl alcohol sulfate) (KPVS), with a cationic polyelectrolyte nanogel (CPENG) composed of a lightly cross-linked copolymer of N-isopropylacrylamide and 1-vinylimidazole, in an aqueous salt-free solution (pH 3 and 25 °C), as a function of the molar mixing ratio (Mmr) of anionic to cationic groups. Also studied for comparison was the complexation of KPVS with poly(diallyldimethylammonium chloride) (PDDA), which is a standard reaction in colloid titration.

View Article and Find Full Text PDF

This work aimed to obtain information on the water dispersibility of a 1:1 stoichiometric polyelectrolyte nanogel complex (SPENC). We synthesized a cationic polyelectrolyte nanogel (CPENG) composed of a cross-linked copolymer of 1-vinylimidazole and N-isopropylacrylamide. SPENC was then prepared at 25 degrees C from the mixing of equimolar amounts (based on fixed charges) of CPENG and potassium poly(vinyl alcohol) sulfate, which were dissolved in an aqueous solution without adding salt and at pH 3.

View Article and Find Full Text PDF

Drying dissipative structures of aqueous dispersions of lycopodium particles (31 microm in average diameter) from the spores of Lycopodium clavatum were studied as a function of the particle concentrations in the presence and the absence of sodium chloride. The drying patterns formed on a cover glass, a watch glass and a Petri glass dish were observed macroscopically and microscopically. Lycopodium particles were the combination of hemisphere and tetrahedron in their shape and possessed the weakly acidic groups on their surfaces.

View Article and Find Full Text PDF

We studied the behavior in water of polymers, microgels, and macrogels based on the following four monomers: N-isopropylacrylamide (NiPA), N-isopropylmethacrylamide (NiPMA), N-n-propylacrylamide (NnPA), and N-n-propylmethacrylamide (NnPMA). The thermal phase separation of polymers in water as well as of microgels in the aqueous dispersion was examined by a combination of turbidity measurements and differential scanning calorimetry (DSC). The hydrodynamic radius of microgels and the swelling degree of macrogels (fine cylindrical bulk gels) were also examined as a function of temperature using the dynamic light scattering and the microscopic method, respectively.

View Article and Find Full Text PDF

The geometric characteristics of nanogel particles in aqueous solutions were studied by determining their ratios of radius of gyration (mean-square radius; Rg) to hydrodynamic radius (Rh), Rg/Rh, derived from static light scattering and dynamic light scattering experiments, respectively. The various nanogel samples studied included ones composed of lightly cross-linked N-isopropylacrylamide (NIPA) polymer, NIPA-based anionic or cationic copolymers, and amphoteric terpolymers. Polyelectrolyte complexes between anionic or cationic nanogels and oppositely charged polyions or nanogels having opposite charges were also studied.

View Article and Find Full Text PDF

We have reported in the previous paper (Colloids Surf. B (2006) in press) a marked increase in the rate of gluconic acid production at a very high cell concentration (40 g/l) of filamentous fungus (Aspergillus niger IFO 31012) which was immobilized with polyelectrolyte complex consisting of potassium poly(vinyl alcohol) sulfate and trimethylammonium glycol chitosan iodide [6-O-(2-hydroxyethyl)-2-(trimethylammonio)-chitosan iodide]. The present study was carried out to look at what factors play a crucial role in this enhancement.

View Article and Find Full Text PDF

A polyelectrolyte nanogel (PENG) particle consisting of lightly cross-linked terpolymer chains of N-isopropylacrylamide, acrylic acid, and 1-vinylimidazole has positive charges in an aqueous medium at pH 3 due to protonation of the imidazole groups, and thereby forms a polyelectrolyte complex with the linear polyanion, potassium poly(vinyl alcohol) sulfate (KPVS). It has been demonstrated that the hydrodynamic radius (Rh), by dynamic light scattering (DLS), and the radius of gyration (Rg), by static light scattering (SLS), of the complex particles are smallest at approximately 1:1 mixing ratio (rm) of anions to cations, in the absence of simple salts such as KCl (Langmuir 2005, 21, 4830). Here, we aimed to study the nature of the complex formed at rm=1 and examined the complex formation process by electrophoretic light scattering (ELS).

View Article and Find Full Text PDF

We studied the immobilization of a mycelium (Aspergillus niger) using the working hypothesis as follows: (a) when polycation was added to the cell suspension, a few parts of it would bind on the surface of a hypha, allowing to gather the hyphae in part but not all; (b) upon further addition of polyanion, such a gathering of the hyphae is tightly bunched by the polyelectrolyte complex (PEC) which is resulted from the remaining polycation; (c) as a result, a mycelium with partially bunched hyphae can be obtained. Potassium poly(vinyl alcohol) sulfate and trimethylammonium glycol chitosan iodide [6-O-(2-hydroxyethyl-2-(trimethylamonio)-chitosan iodide) were used as the polyanion and the polycation, respectively. The optical and electron microscopic analyses showed that our immobilized cell contains many of PEC-bunched hyphae.

View Article and Find Full Text PDF

Complex formation of poly(N-isopropylacrylamide) (PNIPA) having a weight-average molecular weight of 1,720,000g/mol with human serum albumin (HSA), ovalbumin (OVA) and lysozyme (LYZ) was studied in an aqueous medium containing 0.01 M NaCl and adjusted to pH 3. The polymer-protein mixtures at different molar ratios (r(m)) were examined by static light scattering (SLS).

View Article and Find Full Text PDF

Formation of protein-polyelectrolyte complexes (PPCs) between bovine serum albumin (BSA) and potassium poly (vinyl alcohol) sulfate (KPVS) was studied at pH 3 as a function of ionic strength. Turbidimetric titration was employed by a combination of dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The formal charge (Z(PPC)) of the resulting PPCs at different ionic strengths were estimated from ELS data by assuming the free draining and the non-free draining model.

View Article and Find Full Text PDF

We studied complex formation in an aqueous salt-free system (pH approximately 3 and at 25 degrees C) between nanogel particles having opposite charges. Anionic gel (AG) and cationic gel (CG) particles consist of lightly cross-linked N-isopropylacrylamide (NIPA) copolymers with 2-acrylamido-2-methylpropane sulfonic acid and with 1-vinylimidazole, respectively. The number of charges per particle was -4490 for AG and +20 300 for CG, as estimated from their molar masses (3.

View Article and Find Full Text PDF

This paper aims to provide a systematic discussion based on our experimental results both previously published and unpublished, to promote better understanding of volume-phase transitions in polyelectrolyte gels. Special attention was paid to the distribution of network charges as well as to the attractive interaction among polymer segments. From looking at how these effects appear in the swelling curves, an exploration of the nature of polyelectrolyte gel transitions was attempted.

View Article and Find Full Text PDF

Polyelectrolyte complex formation of a strong polyanion, potassium poly(vinyl alcohol) sulfate (KPVS), with positively charged nanogels was studied at 25 degrees C in aqueous solutions with different KCl concentrations (C(s)) as a function of the polyion-nanogel mixing ratio based on moles of anions versus cations. Used as the gel sample was a polyampholytic nanogel consisting of lightly cross-linked terpolymer chains of N-isopropylacrylamide, acrylic acid, and 1-vinylimidazole; thus, the complexation was performed at pH 3 at which the imidazole groups are fully protonated to generate positive charges. Turbidimetric titration was employed to vary the mixing ratio.

View Article and Find Full Text PDF

Polyampholyte gels were prepared by free radical polymerization of aqueous monomer solutions with the following composition: 69% N-isopropylacrylamide (thermosensitive neutral monomer), 1% N,N'-methylenebisacrylamide (cross-linker), 15% 1-vinylimidazole (cationic monomer), and either 15% acrylic acid (AAc, anionic monomer) or poly(acrylic acid) (PAAc, polyanion). We thus obtained two sorts of polyampholyte gels; that is, G1 with immobilized PAAc and G2 with randomly copolymerized AAc. The equilibrium swelling ratio (Qe) was studied as a function of the pH, NaCl concentration, and temperature.

View Article and Find Full Text PDF

A way to convert the volume change of a biochemo-mechanical gel into the change in liquid column length was developed. Our trial sensor device consisted of a small compartment for incorporating the gel, a flow channel with a filled dye solution, and a poly(dimethylsiloxane) (PDMS) diaphragm by which the gel and the dye solution were separated. A lightly cross-linked N-isopropylacrylamide (NIPAAm)/acrylic acid (AA) copolymer gel with immobilized glucose oxidase was used as a sensing element.

View Article and Find Full Text PDF

The formation of protein-polymer complexes was studied in an aqueous system using dynamic light scattering (DLS) and static light scattering (SLS) as the main experimental tools. Human serum albumin (HSA) was used as a protein and complexed with four representative water-soluble polymers: poly(N-isopropylacrylamide) (PNIPA), poly(ethylene glycol) (PEG), poly(vinyl pyrrolidone) (PVP), and poly(vinyl alcohol) (PVA). The first three molecular weights were within 420,000-540,000 and the last one was 270,000.

View Article and Find Full Text PDF

We report on a beating polymer gel that exhibits periodical volume changes (swelling and deswelling) in a closed solution without external stimuli, like autonomous heartbeat. The mechanical oscillation is driven by the chemical energy of the oscillatory Belousov-Zhabotinsky (BZ) reaction. The gel is a copolymer gel of N-isopropylacrylamide (NIPAAm) in which ruthenium tris(2,2(')-bipyridine) [Ru(bpy)(3)], known as a catalyst of the BZ reaction, is covalently bonded to the polymer chain.

View Article and Find Full Text PDF

Complexation of human serum albumin (HSA) with poly(N-isopropylacrylamide) (PNIPA) ranging in molecular weight (M(PNIPA)) from 2.1 x 10(4) to 1.72 x 10(6) was studied in an aqueous system (pH 3) containing NaCl as a supporting salt.

View Article and Find Full Text PDF

The object of this paper is to provide an enzymatic means to attain faster swelling or shrinking kinetics of polyelectrolyte gels that undergo volume phase transition as an immobilized enzyme reaction sets in. For this, we studied the coimmobilization of gluconolactonase (GL) with glucose oxidase (GOD). A gel used was in the shape of a small cylinder (several hundred micrometers in diameter) and composed of a lightly cross-linked copolymer of N-isopropylacrylamide and acrylic acid.

View Article and Find Full Text PDF