Background: Hepatic insulin clearance (HIC) is an important pathophysiology of type 2 diabetes mellitus (T2DM). HIC was reported to decrease in patients with type 2 diabetes and metabolic syndrome. HIC is originally calculated by post-load insulin and C-peptide from the oral glucose tolerance test (OGTT).
View Article and Find Full Text PDFPancreatic islet β-cells weaken under oxidative stress. In this study, human pancreatic islet-derived 1.1B4 cells were exposed to HO and analysed using a human microarray, which revealed that (, , , () and were upregulated, whereas and were not.
View Article and Find Full Text PDFBackground: Aldehyde dehydrogenase 2 (ALDH2) is an important enzyme involved in alcohol metabolism. ALDH2 polymorphism has been reported as a risk factor for type 2 diabetes mellitus (T2DM) and is associated with liver insulin resistance due to alcohol consumption in non-diabetic individuals. Herein, we investigated the association between ALDH2 polymorphisms and insulin resistance in patients with T2DM.
View Article and Find Full Text PDFIntroduction: Pancreatic and duodenal homeobox factor-1 () is an imperative gene for insulin secretion in maturity-onset diabetes of the young 4. gene polymorphism was associated with lower first-phase insulin secretion in a genome-wide association study of intravenous glucose tolerance test. It was not associated with type 2 diabetes risk and insulin secretion in a genome-wide oral glucose tolerance test study.
View Article and Find Full Text PDFSodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment is a therapeutic approach for type 2 diabetes mellitus (T2DM). Some reports have shown that SGLT2i treatment improves insulin resistance; however, few studies have evaluated insulin resistance by the glucose clamp method. Hepatic insulin clearance (HIC) is a new pathophysiological mechanism of T2DM.
View Article and Find Full Text PDFOne hypothesis regarding the cause of diabetic complications is that advanced glycation end products (AGEs) bind to the AGE receptor and induce changes in gene expression. However, what AGEs exist in vivo and how individual AGEs are produced and impact body metabolic process to cause diabetes complications are not understood. We developed a new precise method to measure AGEs using LC-MS/MS with a new column and measured 7 free AGEs, including N(6)-carboxymethyllysine (CML), N(6)-(1-carboxyethyl)-l-lysine (CEL) and N5-(5-hydro-5-methyl-4-imidazolon-2-yl)L-ornithine (MG-H1), in human blood components.
View Article and Find Full Text PDFBackground: Screening for undiagnosed type 2 diabetes mellitus is recommended for Asian Americans with a body mass index ≥23. However, the optimal body mass index cut-off score for predicting the risk of diabetes mellitus in Japanese people is not well known. The aim of this study was to determine the best body mass index cut-off score for predicting insulin resistance and diabetes mellitus in the Japanese population.
View Article and Find Full Text PDFBackground: Increased hepatic insulin clearance (HIC) is important in the pathophysiology of type 2 diabetes mellitus (T2DM). The aim of this study is to analyze an effective insulin resistance (IR) index that is minimally affected by HIC.
Methods: Our study involved 20 participants with T2DM and 21 healthy participants without diabetes (Non-DM).
Objective: Advanced glycation end products (AGEs) are important in the pathophysiology of type 2 diabetes mellitus (T2DM). They directly cause insulin secretory defects in animal and cell culture models and may promote insulin resistance in nondiabetic subjects. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry method for measuring AGEs in human serum.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is caused by insulin resistance and β cell dysfunction. In recent studies reported that several markers associated with insulin sensitivity in skeletal muscle, Adiponectin and other parameters, such as fatty acid-binding protein (FABP4), have been reported to regulate insulin resistance, but it remains unclear which factor mostly affects insulin resistance in T2DM. In this cross-sectional study, we evaluated the relationships between several kinds of biomarkers and insulin resistance, and insulin secretion in T2DM and healthy controls.
View Article and Find Full Text PDFThe aim of this study was to develop a simple and sensitive method to analyze several advanced glycation end products (AGEs) simultaneously using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and to apply this method to the quantitation of AGEs in brown-colored foods. The developed method enabled to separate and quantitate simultaneously seven AGEs, and was applied to the determination of free AGEs contained in various kinds of soy sauce and beer. The major AGEs in soy sauce and beer were N-carboxymethyllysine (CML), N-carboxyethyllysine (CEL), and N-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1).
View Article and Find Full Text PDFBackground: Bezafibrate is mainly used to treat hypertriglyceridemia. Studies have reported that bezafibrate also improves type 2 diabetes mellitus, but the mechanism has not been fully elucidated. We performed euglycemic hyperinsulinemic clamps (glucose clamp) and meal tolerance tests (MTT) to examine the effects of bezafibrate on insulin resistance in patients with type 2 diabetes mellitus.
View Article and Find Full Text PDFBackground: Galectin-3 is a family of soluble beta-galactoside-binding lectins that play many important regulatory roles in inflammation. Galectin-3-deficient mice have been shown to exhibit excess adiposity, hyperglycemia, insulin resistance and systemic inflammation. We investigated the association between serum galectin-3 and insulin resistance in patients with type 2 diabetes using a glucose clamp method.
View Article and Find Full Text PDFWe investigated the effects of vitamin C administration on vitamin C-specific transporters in ODS/ShiJcl-od/od rat livers. The vitamin C-specific transporter levels increased in the livers of the rats not administered vitamin C and decreased in the livers of those administered vitamin C at 100 mg/d, indicating that these transporter levels can be influenced by the amount of vitamin C administered.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbon (PAH) compounds including 3-methylcholanthrene induce harmful reactive intermediates and reactive oxygen species. This study reports the effect of 3-methylcholanthrene on the accumulation of vitamin C and the expression of vitamin C transporters. ODS rats were given l-ascorbic acid daily and intraperitoneal injections of 10 mg 3-methylcholanthrene in total.
View Article and Find Full Text PDFGenetic polydactyly/arhinencephaly mouse embryo, Pdn/Pdn, exhibits suppression of Gli3 gene expression. Ochratoxin A (OTA) is a teratogen that causes neural tube defects (NTD) in mice. We investigated gender-dependent differences in the incidence of NTD induced by OTA in the Pdn/Pdn mouse.
View Article and Find Full Text PDFCongenit Anom (Kyoto)
March 2010
ABSTRACT GLI3 is the gene responsible for Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS) and Postaxial polydactyly type-A (PAP-A). Genetic polydactyly mice such as Pdn/Pdn (Polydactyly Nagoya), Xt(H)/Xt(H) (Extra toes) and Xt(J)/Xt(J) (Extra toes Jackson) are the mouse homolog of GCPS, and Gli3(tmlUrtt)/Gli3(tmlUrt) is produced as the mouse homolog of PHS. In the present review, relationships between mutation points of GLI3 and Gli3, and resulting phenotypes in humans and mice are described.
View Article and Find Full Text PDFThe responsible gene of genetic polydactyly/arhinencephaly mouse (Pdn/Pdn) is Gli3. Pdn/Pdn exhibits absence of the olfactory bulb, suggesting telencephalic dysmorphogenesis. It has been cleared that a transposon was inserted into intron 3 of the Gli3 gene in the Pdn mouse.
View Article and Find Full Text PDFThe gene responsible for the polydactyly/arhinencephaly (Pdn/Pdn) mouse, which exhibits polysyndactyly and arhinencephaly and has a 13.2% risk of neural tube defects (NTD), has been identified as Gli3. Ochratoxin A (OTA) is a teratogen causing NTD in mice.
View Article and Find Full Text PDFIt is well known that ochratoxin A (OTA) induces neural tube defects (NTDs) in mice. In the present study, OTA was administered to the genetic polydactyly/arhinencephaly mouse (Pdn/Pdn) to investigate the synergistic effect between gene and environmental toxin. OTA treatment on day 7.
View Article and Find Full Text PDFNon-treated homozygous polydactyly/arhinencephaly (Pdn/Pdn) mouse fetuses exhibited exencephaly in 16.7% of cases. Treatment of Pdn/Pdn mice with 350 mg/kg of valproic acid (VPA) on days 8.
View Article and Find Full Text PDF