Publications by authors named "Etsuko Hirota"

We have proposed that the excellent blood compatibility of poly(2-methoxyethylacrylate (MEA)) is caused by freezing bound water contained in it on the basis of results on platelet activation (Tanaka and Mochizuki, J Biomed Mater Res A 2004; 68:684-695). To clarify the applicability of this mechanism to other indexes for blood compatibility, the relationship between complement activation and water structure was investigated by using two copolymers, poly(MEA-2-hydroxyethylmethacrylate (HEMA)) and poly(2-methoxyethylmethacrylate (MEMA)-HEMA), where HEMA content was varied from 25 to 90 mol %. ESCA analysis revealed that the surface compositions of these copolymers (dry state) agreed with the compositions determined by (1)H NMR.

View Article and Find Full Text PDF

Diblock copolymers composed of 2-methoxyethylacrylate (MEA) and 2-hydroxyethylmethacrylate (HEMA) were firstly prepared (the composition ratio = 90/10, 79/21, 66/34, and 48/52 mol/mol) by anion living polymerization. ESCA analysis of their surface structures (dry state) revealed that PMEA segment was segregated to the top surface in all of the polymers, whereas the results of contact angle of water (wet state) showed that the surfaces were covered with PHEMA segment. In vitro platelet adhesion test showed that these polymers had the excellent compatibility with platelet compared to PHEMA homopolymer.

View Article and Find Full Text PDF