Air dispersion software models for evaluating pesticide spray drift during application have been developed that can potentially serve as a cheaper convenient alternative to field monitoring campaigns. Such models require validation against field monitoring data in order for them to be employed with confidence, especially when they are used to implement regulatory measures or to evaluate potential human exposure levels. In this case study, off-target pesticide drift was monitored during ground application of a pesticide mixture to a sorghum field in South Africa.
View Article and Find Full Text PDFBackground: Red-billed quelea (Quelea quelea) are controlled at breeding colonies and roosts by organophosphate sprays or explosions. Contamination with organophosphates after sprays and with petroleum products and phthalates after explosions was assessed.
Results: Concentrations in soil of the organophosphate fenthion the day after sprays were uneven (0-29.
The red-billed quelea bird Quelea quelea is one of sub-Saharan Africa's most damaging pests, attacking small-grain crops throughout semi-arid zones. It is routinely controlled by spraying its breeding colonies and roosts with organophosphate pesticides, actions often associated with detrimental effects on non-target organisms. Attributions of mortality and morbidity of non-targets to the sprays are difficult to confirm unequivocally but can be achieved by assessing depressions in cholinesterase activities since these are reduced by exposure to organophosphates.
View Article and Find Full Text PDF