Science is crucial for evidence-based decision-making. Public trust in scientists can help decision makers act on the basis of the best available evidence, especially during crises. However, in recent years the epistemic authority of science has been challenged, causing concerns about low public trust in scientists.
View Article and Find Full Text PDFScience is integral to society because it can inform individual, government, corporate, and civil society decision-making on issues such as public health, new technologies or climate change. Yet, public distrust and populist sentiment challenge the relationship between science and society. To help researchers analyse the science-society nexus across different geographical and cultural contexts, we undertook a cross-sectional population survey resulting in a dataset of 71,922 participants in 68 countries.
View Article and Find Full Text PDFBackground: Monte Carlo (MC) modeling of MR-guided radiotherapy (MRgRT) treatment machines enables the characterization of photon/electron interactions in the presence of a magnetic field. The EGSnrc MC code system is a well-established system for radiation dose calculations. The multi-leaf collimator (MLC) component modules presently available within the EGSnrc MC code system do not include a model of the double-focused MLC available on a low-field (0.
View Article and Find Full Text PDFBackground: Little is known about how conspiracy beliefs and health responses are interrelated over time during the course of the coronavirus disease 2019 (Covid-19) pandemic. This longitudinal study tested two contrasting, but not mutually exclusive, hypotheses through cross-lagged modeling. First, based on the consequential nature of conspiracy beliefs, we hypothesize that conspiracy beliefs predict an increase in detrimental health responses over time.
View Article and Find Full Text PDFAt the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions.
View Article and Find Full Text PDFActivity-based theranostic photosensitizers are highly attractive in photodynamic therapy as they offer enhanced therapeutic outcome on cancer cells with an imaging opportunity at the same time. However, photosensitizers (PS) cores that can be easily converted to activity-based photosensitizers (aPSs) are still quite limited in the literature. In this study, we modified the dicyanomethylene-4-chromene (DCM) core with a heavy iodine atom to get two different PSs (DCM-I, I-DCM-Cl) that can be further converted to aPS after simple modifications.
View Article and Find Full Text PDFChanging collective behaviour and supporting non-pharmaceutical interventions is an important component in mitigating virus transmission during a pandemic. In a large international collaboration (Study 1, N = 49,968 across 67 countries), we investigated self-reported factors associated with public health behaviours (e.g.
View Article and Find Full Text PDFPeople differ in their general tendency to endorse conspiracy theories (that is, conspiracy mentality). Previous research yielded inconsistent findings on the relationship between conspiracy mentality and political orientation, showing a greater conspiracy mentality either among the political right (a linear relation) or amongst both the left and right extremes (a curvilinear relation). We revisited this relationship across two studies spanning 26 countries (combined N = 104,253) and found overall evidence for both linear and quadratic relations, albeit small and heterogeneous across countries.
View Article and Find Full Text PDFThe Covid-19 pandemic has inspired many conspiracy theories, which are associated with detrimental health beliefs and behaviors (e.g. reduced physical distancing; decreased vaccination intentions).
View Article and Find Full Text PDFBackground: Conspiracy beliefs are associated with detrimental health attitudes during the coronavirus disease 2019 (Covid-19) pandemic. Most prior research on these issues was cross-sectional, however, and restricted to attitudes or behavioral intentions. The current research was designed to examine to what extent conspiracy beliefs predict health behavior and well-being over a longer period of time.
View Article and Find Full Text PDFMetabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E.
View Article and Find Full Text PDFIn living organisms, the same enzyme catalyses the degradation of thousands of different mRNAs, but the possible influence of competing substrates has been largely ignored so far. We develop a simple mechanistic model of the coupled degradation of all cell mRNAs using the total quasi-steady-state approximation of the Michaelis-Menten framework. Numerical simulations of the model using carefully chosen parameters and analyses of rate sensitivity coefficients show how substrate competition alters mRNA decay.
View Article and Find Full Text PDFTreatment for herpes simplex virus-1 and -2 (HSV-1 and -2) patients who suffer from recurrent outbreaks consists of multiple daily doses of the antiviral drugs acyclovir (ACV), penciclovir, or their more orally bioavailable derivatives valacyclovir or famciclovir. Drug troughs caused by missed doses may result in viral replication, which can generate drug-resistant mutants along with clinical sequelae. We developed a molecularly homogeneous mixture of ACV with the bioerodable polymer polycaprolactone.
View Article and Find Full Text PDFHalogen-halogen interactions are a particularly interesting class of halogen bonds that are known to be essential design elements in crystal engineering. In solution, it is likely that halogen-halogen interactions also play a role, but the weakness of this interaction makes it difficult to characterize or even simply detect. We have designed a supramolecular balance that allows detecting BrBr interactions between CBr groups in solution and close to room temperature.
View Article and Find Full Text PDFWe report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals.
View Article and Find Full Text PDFA Rashba/Dresselhaus band splitting has been recently measured in organohalide perovskites and invoked in various experiments as a possible cause for the reduced electron-hole recombination rates observed in this class of materials. In this Perspective, we discuss the interplay of electronic and nuclear degrees of freedom in defining such an effect in realistic methylammonium lead iodide (MAPbI) models. We distinguish between bulk and surface effects and find that, while a spatially local (in time and space) effect may be at work in the bulk, a "static" band-splitting effect is found at surfaces due to structural distortion.
View Article and Find Full Text PDFThe first singlet excited states of a series of para-polyphenylene ethynylenes (PPEs) are investigated using time-dependent density functional theory (TD-DFT). Vibronic absorption spectra are calculated and show excellent agreement with the experiments, thus validating the adequacy of TD-DFT for such systems. The vibronic structure is assigned to the excitation of a few typical stretching and bending modes.
View Article and Find Full Text PDFIn this study, we evaluated the effect of changes in the nutritional status on the performances of growing Creole kids during an established experimental gastrointestinal nematode (GIN) infection. Eighteen 6-month-old Creole kids were distributed in two main groups infected (I) and non-infected (NI) and were placed for a period of 4 weeks on each of three diets differing in their nutritional values: (1) fresh grass (FG, 6.7 MJ/kg dry matter (DM) and 7.
View Article and Find Full Text PDFHerein we report the synthesis and time-resolved spectroscopic characterization of a homoleptic Fe(ii) complex exhibiting a record (3)MLCT lifetime of 26 ps promoted by benzimidazolylidene-based ligands. Time dependent density functional molecular modeling of the triplet excited state manifold clearly reveals that, at equilibrium geometries, the lowest (3)MC state lies higher in energy than the lowest (3)MLCT one. This unprecedented energetic reversal in a series of iron complexes, with the stabilization of the charge-transfer state, opens up new perspectives towards iron-made excitonic and photonic devices, hampering the deactivation of the excitation via metal centered channels.
View Article and Find Full Text PDFThe presence of a Rashba band-splitting mechanism mediated by spin-orbit coupling and breaking of inversion symmetry has been suggested as a possible cause for the reduced recombination rates observed in organohalide perovskites. Here, we investigate the interplay of electronic and nuclear degrees of freedom in defining the Rashba splitting in realistic MAPbI3 models. Our simulations disclose a "dynamical Rashba effect", allowing for a quantification of its magnitude under thermal conditions.
View Article and Find Full Text PDFThis article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer.
View Article and Find Full Text PDF