This Letter introduces the so-called Quasi Time-Reversible scheme based on Grassmann extrapolation (QTR G-Ext) of density matrices for an accurate calculation of initial guesses in Born-Oppenheimer Molecular Dynamics (BOMD) simulations. The method shows excellent results on four large molecular systems that are representative of real-life production applications, ranging from 21 to 94 atoms simulated with Kohn-Sham (KS) density functional theory surrounded with a classical environment with 6k to 16k atoms. Namely, it clearly reduces the number of self-consistent field iterations while at the same time achieving energy-conserving simulations, resulting in a considerable speed-up of BOMD simulations even when tight convergence of the KS equations is required.
View Article and Find Full Text PDFJ Chem Theory Comput
November 2021
Born-Oppenheimer molecular dynamics (BOMD) is a powerful but expensive technique. The main bottleneck in a density functional theory BOMD calculation is the solution to the Kohn-Sham (KS) equations that requires an iterative procedure that starts from a guess for the density matrix. Converged densities from previous points in the trajectory can be used to extrapolate a new guess; however, the nonlinear constraint that an idempotent density needs to satisfy makes the direct use of standard linear extrapolation techniques not possible.
View Article and Find Full Text PDFIn this work, we provide the mathematical elements we think essential for a proper understanding of the calculus of the electrostatic energy of point-multipoles of arbitrary order under periodic boundary conditions. The emphasis is put on the expressions of the so-called self-parts of the Ewald summation where different expressions can be found in the literature. Indeed, such expressions are of prime importance in the context of new generation polarizable force field where the self-field appears in the polarization equations.
View Article and Find Full Text PDFA fully polarizable implementation of the hybrid quantum mechanics/molecular mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent relaxation of both the MM induced dipoles and the QM electronic density, is used for ground state energies and extended to electronic excitations in the framework of time-dependent density functional theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET(30) scale is presented.
View Article and Find Full Text PDFWe propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided.
View Article and Find Full Text PDFIn this article, we present a parallel implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The smooth particle mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the direct inversion in the iterative subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy and force computation needed to perform a MD step.
View Article and Find Full Text PDFIn this paper, we present a scalable and efficient implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The Smooth Particle-Mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the Direct Inversion in the Iterative Subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy-force computation needed to perform a MD step.
View Article and Find Full Text PDF