Publications by authors named "Etienne Doumazane"

Understanding the neural basis of infant social behaviors is crucial for elucidating the mechanisms of early social and emotional development. In this work, we report a specific population of somatostatin-expressing neurons in the zona incerta (ZI) of preweaning mice that responds dynamically to social interactions, particularly those with their mother. Bidirectional neural activity manipulations in pups revealed that widespread connectivity of preweaning ZI neurons to sensory, emotional, and cognitive brain centers mediates two key adaptive functions associated with maternal presence: the reduction of behavior distress and the facilitation of learning.

View Article and Find Full Text PDF

Objective: CCR5, a G protein-coupled receptor (GPCR), is used by most HIV strains as a coreceptor. In this study, we looked for other GPCR able to modify HIV-1 infection.

Design: We analyzed the effects of one GPCR coexpressed with CCR5, EBI2, on HIV-1 replicative cycle.

View Article and Find Full Text PDF

Objective: In this study, we looked for a new family of latency reversing agents.

Design: We searched for G-protein-coupled receptors (GPCR) coexpressed with the C-C chemokine receptor type 5 (CCR5) in primary CD4 T cells that activate infected cells and boost HIV production.

Methods: GPCR coexpression was unveiled by reverse transcriptase-PCR.

View Article and Find Full Text PDF

Cell surface receptors represent a vast majority of drug targets. Efforts have been conducted to develop biosensors reporting their conformational changes in live cells for pharmacological and functional studies. Although Förster resonance energy transfer (FRET) appears to be an ideal approach, its use is limited by the low signal-to-noise ratio.

View Article and Find Full Text PDF

Efficient cell-to-cell communication relies on the accurate signalling of cell surface receptors. Understanding the molecular bases of their activation requires the characterization of the dynamic equilibrium between active and resting states. Here, we monitor, using single-molecule Förster resonance energy transfer, the kinetics of the reorientation of the extracellular ligand-binding domain of the metabotropic glutamate receptor (mGluR), a class C G-protein-coupled receptor.

View Article and Find Full Text PDF

In multimeric cell-surface receptors, the conformational changes of the extracellular ligand-binding domains (ECDs) associated with receptor activation remain largely unknown. This is the case for the dimeric metabotropic glutamate receptors even though a number of ECD structures have been solved. Here, using an innovative approach based on cell-surface labeling and FRET, we demonstrate that a reorientation of the ECDs is associated with receptor and G-protein activation.

View Article and Find Full Text PDF

The eight metabotropic glutamate receptors (mGluRs) are key modulators of synaptic transmission and are considered promising targets for the treatment of various brain disorders. Whereas glutamate acts at a large extracellular domain, allosteric modulators have been identified that bind to the seven transmembrane domain (7TM) of these dimeric G-protein-coupled receptors (GPCRs). We show here that the dimeric organization of mGluRs is required for the modulation of active and inactive states of the 7TM by agonists, but is not necessary for G-protein activation.

View Article and Find Full Text PDF

The concept of oligomerization of G protein-coupled receptor (GPCR) opens new perspectives regarding physiological function regulation. The capacity of one GPCR to modify its binding and coupling properties by interacting with a second one can be at the origin of regulations unsuspected two decades ago. Although the concept is interesting, its validation at a physiological level is challenging and probably explains why receptor oligomerization is still controversial.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) can form heteromeric complexes. Herein, we describe a new approach to test the heteromerization of 2 receptors, or 2 receptor subunits, and to study the stoichiometry of the resulting complexes. As a proof-of-concept study, we investigated whether metabotropic glutamate receptors (mGluRs), in addition to being well-known homodimers, can form heteromers.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono640kjr85rk9lgqafc51cn1lv5kq5pqe): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once