Publications by authors named "Etienne De Plaen"

Background: Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan-dioxygenase (TDO) are enzymes catabolizing the essential amino acid tryptophan into kynurenine. Expression of these enzymes is frequently observed in advanced-stage cancers and is associated with poor disease prognosis and immune suppression. Mechanistically, the respective roles of tryptophan shortage and kynurenine production in suppressing immunity remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • *The review highlights the mechanisms behind tryptophan homeostasis, focusing on its absorption, transport, metabolism, and elimination, and how these processes are linked to immune function and disorders.
  • *Two key enzymes, IDO1 and TDO, regulate tryptophan catabolism; TDO's stability and activity are influenced by tryptophan levels, which can lead to conditions like hypertryptophanemia when disrupted.
View Article and Find Full Text PDF

Maintaining stable tryptophan levels is required to control neuronal and immune activity. We report that tryptophan homeostasis is largely controlled by the stability of tryptophan 2,3-dioxygenase (TDO), the hepatic enzyme responsible for tryptophan catabolism. High tryptophan levels stabilize the active tetrameric conformation of TDO through binding noncatalytic exosites, resulting in rapid catabolism of tryptophan.

View Article and Find Full Text PDF

The proteasome is responsible for selective degradation of proteins. It exists in mammalian cells under four main subtypes, which differ by the combination of their catalytic subunits: the standard proteasome (β1-β2-β5), the immunoproteasome (β1i-β2i-β5i) and the two intermediate proteasomes (β1-β2-β5i and β1i-β2-β5i). The efficiency of the four proteasome subtypes to degrade ubiquitinated or oxidized proteins remains unclear.

View Article and Find Full Text PDF

Tumors use various mechanisms to avoid immune destruction. Cyclooxygenase-2 (COX-2) expression may be a driver of immune suppression in melanoma, but the mechanisms involved remain elusive. Here, we show that COX-2 expression drives constitutive expression of indoleamine 2,3-dioxygenase 1 (IDO1) in human tumor cells.

View Article and Find Full Text PDF

Loss of expression of surface antigens represents a significant problem for cancer immunotherapy. Microphthalmia-associated transcription factor (MITF-M) regulates melanocyte fate by driving expression of many differentiation genes, whose protein products can be recognized by cytolytic T lymphocytes. We previously reported that interleukin-1ß (IL-1ß) can downregulate MITF-M levels.

View Article and Find Full Text PDF

This study aimed to construct DNA vaccines encoding the mouse P1A tumor antigen and to generate a protective immune response against the P815 mastocytoma, as a model for vaccines against human MAGE-type tumor antigens. DNA vaccines were constructed and delivered to mice by intramuscular electroporation before tumor challenge. Immunization with a plasmid coding for the full-length P1A significantly delayed tumor growth and mice survived at least 10 days longer than untreated controls.

View Article and Find Full Text PDF

Tryptophan catabolism mediated by indoleamine 2,3-dioxygenase (IDO1) is an important mechanism of peripheral immune tolerance contributing to tumoral immune resistance, and IDO1 inhibition is an active area of drug development. Tryptophan 2,3-dioxygenase (TDO) is an unrelated hepatic enzyme that also degrades tryptophan along the kynurenine pathway. Here, we show that enzymatically active TDO is expressed in a significant proportion of human tumors.

View Article and Find Full Text PDF

We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes.

View Article and Find Full Text PDF

Several genes with specific expression in germ cells show aberrant activation in different types of tumors. These genes, termed cancer-germline (CG) genes, encode tumor-specific antigens, which represent potential targets for therapeutic vaccination against cancer. The germline-specific gene BORIS (Brother Of the Regulator of Imprinted Sites), which encodes an 11-zinc-fingers transcriptional regulator, was recently qualified as a new CG gene, as it was found to be activated in a variety of tumor samples.

View Article and Find Full Text PDF

MAGE-A1 belongs to a group of germ line-specific genes that rely primarily on DNA methylation for repression in somatic tissues. In many types of tumors, the promoter of these genes becomes demethylated and transcription becomes activated. We showed previously that, although MZ2-MEL melanoma cells contain an active unmethylated MAGE-A1 gene, they lack the ability to induce demethylation of newly integrated MAGE-A1 transgenes that were methylated in vitro before transfection.

View Article and Find Full Text PDF

Melanoma patients have high frequencies of T cells directed against antigens of their tumor. The frequency of these antitumor T cells in the blood is usually well above that of the anti-vaccine T cells observed after vaccination with tumor antigens. In a patient vaccinated with a MAGE-3 antigen presented by HLA-A1, we measured the frequencies of anti-vaccine and antitumor T cells in several metastases to evaluate their respective potential contribution to tumor rejection.

View Article and Find Full Text PDF

After vaccination of melanoma patients with MAGE antigens, we observed that even in the few patients showing tumor regression, the frequency of anti-vaccine T cells in the blood was often either undetectable or <10(-5) of CD8 T cells. This frequency being arguably too low for these cells to be sole effectors of rejection, we reexamined the contribution of T cells recognizing other tumor antigens. The presence of such antitumor T cells in melanoma patients has been widely reported.

View Article and Find Full Text PDF

MAGE-A1 belongs to a family of 12 genes that are active in various types of tumors and silent in normal tissues except in male germ-line cells. The MAGE-encoded antigens recognized by T cells are highly tumor-specific targets for T cell-oriented cancer immunotherapy. The function of MAGE-A1 is currently unknown.

View Article and Find Full Text PDF

Representational difference analysis, a cDNA subtraction approach, was used to identify genes that are expressed in acute leukemia but not in normal hematological tissues. We isolated a cDNA fragment from a cell line derived from a B cell acute lymphoblastic leukemia bearing two Philadelphia chromosomes. The cDNA derives from an orphan gene that was named BLACE.

View Article and Find Full Text PDF

"Cancer-germline" genes such as those of the MAGE family are expressed in many tumors and in male germline cells, but are silent in normal tissues. They encode shared tumor-specific antigens, which have been used in therapeutic vaccination trials of cancer patients. MAGE-6 is expressed in more than 70% of metastatic melanomas and more than 50% of carcinomas of the lung, esophagus, bladder, and head and neck.

View Article and Find Full Text PDF

Background: The MAGE-A genes encode antigens that are of particular interest for antitumor immunotherapy because they are strictly tumor specific and are shared by many tumors. We developed a rapid method to identify the MAGE-A genes expressed in tumors.

Methods: A low-density DNA microarray was designed to discriminate between the 12 MAGE-A cDNAs amplified by PCR with only one pair of consensus primers.

View Article and Find Full Text PDF