Publications by authors named "Etienne Cartier"

We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. In human immortalized cells, MARCH5 knockout leads to the accumulation of immature peroxisomes, reduced fatty-acid-induced peroxisomal biogenesis, and abnormal peroxisome biogenesis in MARCH5/Pex14 and MARCH5/Pex3 dko cells. Upon fatty-acid-induced peroxisomal biogenesis, MARCH5 redistributes to peroxisomes, and ubiquitination activity-deficient mutants of MARCH5 accumulate on peroxisomes containing high levels of the OMM protein Tom20 (mitochondria-derived pre-peroxisomes).

View Article and Find Full Text PDF

Mitochondrial dysfunction is a hallmark of many genetic neurodegenerative diseases, but therapeutic options to reverse mitochondrial dysfunction are limited. While recent studies support the possibility of improving mitochondrial fusion/fission dynamics and motility to correct mitochondrial dysfunction and resulting neurodegeneration in Charcot-Marie-Tooth disease (CMT) and other neuropathies, the clinical utility of reported compounds and relevance of preclinical models are uncertain. Here, we describe motor and sensory neuron dysfunction characteristic of clinical CMT type 2 A in a CRISPR/Casp-engineered Mfn2 Thr105Met (T105M) mutant knock-in mouse.

View Article and Find Full Text PDF

Unlabelled: Peroxisome biogenesis requires yet unidentified mitochondrial proteins. We report that the outer mitochondrial membrane (OMM)-associated E3 Ub ligase MARCH5 is vital for generating mitochondria-derived pre-peroxisomes. MARCH5 knockout results in accumulation of immature peroxisomes and lower expression of various peroxisomal proteins.

View Article and Find Full Text PDF

Among other mechanisms, mitochondrial membrane dynamics including mitochondrial fission and fusion, and the activity of the ubiquitin (Ub)-proteasome system (UPS) both are critical for maintaining mitochondrial function. To advance our knowledge of the role of mitochondrial fission, the UPS, and how they coordinatively affect mitochondrial response to proteotoxicity, we analyzed mitochondrial ubiquitination and mitochondria-specific autophagy (mitophagy) in E3 Ub ligase PRKN/parkin-expressing and -deficient cells. Through imaging, biochemical, and genetic analyses, we found that in a model of acute reduction of mitochondrial translation fidelity (MTF) some population of mitochondria within a single cell are enriched, while some showed reduced levels of CYCS (cytochrome c, somatic) and CPOX (coproporphyrinogen oxidase) proteins, both located in the intermembrane space (IMS); henceforth called "mosaic distribution".

View Article and Find Full Text PDF

Here, we report that acute reduction in mitochondrial translation fidelity (MTF) causes ubiquitination of the inner mitochondrial membrane (IMM) proteins, including TRAP1 and CPOX, which occurs selectively in mitochondria with a severed outer mitochondrial membrane (OMM). Ubiquitinated IMM recruits the autophagy machinery. Inhibiting autophagy leads to increased accumulation of mitochondria with severed OMM and ubiquitinated IMM.

View Article and Find Full Text PDF

Small ubiquitin-like modifier (SUMO) is a widespread regulatory mechanism of post-translational modification (PTM) that induces rapid and reversible changes in protein function and stability. Using SUMO conjugase Ubc9-overexpressing or knock-down cells in Parkinson's disease (PD) models, we demonstrate that SUMOylation protects dopaminergic cells against MPP+ or preformed fibrils (PFFs) of α-synuclein (α-syn)-induced toxicities in cell viability and cytotoxicity assays. In the mechanism of protection, Ubc9 overexpression significantly suppressed the MPP+ or PFF-induced reactive oxygen species (ROS) generation, while Ubc9-RNAi enhanced the toxicity-induced ROS production.

View Article and Find Full Text PDF

The dopamine transporter (DAT) is a plasma membrane protein responsible for the uptake of released dopamine back to the presynaptic terminal and ending dopamine neurotransmission. The DAT is the molecular target for cocaine and amphetamine as well as a number of pathological conditions including autism spectrum disorders, attention-deficit hyperactivity disorder (ADHD), dopamine transporter deficiency syndrome (DTDS), and Parkinson's disease. The DAT uptake capacity is dependent on its level in the plasma membrane.

View Article and Find Full Text PDF

Background: Syntaxin 1 (STX1) is a presynaptic plasma membrane protein that coordinates synaptic vesicle fusion. STX1 also regulates the function of neurotransmitter transporters, including the dopamine (DA) transporter (DAT). The DAT is a membrane protein that controls DA homeostasis through the high-affinity re-uptake of synaptically released DA.

View Article and Find Full Text PDF

Synaptic transmission depends on neurotransmitter pools stored within vesicles that undergo regulated exocytosis. In the brain, the vesicular monoamine transporter-2 (VMAT(2)) is responsible for the loading of dopamine (DA) and other monoamines into synaptic vesicles. Prior to storage within vesicles, DA synthesis occurs at the synaptic terminal in a two-step enzymatic process.

View Article and Find Full Text PDF

ATP-sensitive potassium (K(ATP)) channels of pancreatic beta-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane K(ATP) channels determines the sensitivity of beta-cells to glucose stimulation. The K(ATP) channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.

View Article and Find Full Text PDF

The pancreatic ATP-sensitive potassium (K(ATP)) channel, a complex of four sulfonylurea receptor 1 (SUR1) and four potassium channel Kir6.2 subunits, regulates insulin secretion by linking metabolic changes to beta-cell membrane potential. Sulfonylureas inhibit K(ATP) channel activities by binding to SUR1 and are widely used to treat type II diabetes.

View Article and Find Full Text PDF

Mutations in the sulfonylurea receptor 1 (SUR1), a subunit of ATP-sensitive potassium (K(ATP)) channels, cause familial hyperinsulinism. One such mutation, deletion of phenylalanine 1388 (DeltaPhe-1388), leads to defects in both trafficking and MgADP response of K(ATP) channels. Here we investigated the biochemical features of Phe-1388 that control the proper trafficking and function of K(ATP) channels by substituting the residue with all other 19 amino acids.

View Article and Find Full Text PDF

N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716; 1) is a potent and selective antagonist for the CB1 cannabinoid receptor. Using the AM1 molecular orbital method, conformational analysis of 1 around the pyrazole C3 substituent identified four distinct conformations designated Tg, Ts, Cg, and Cs. The energetic stability of these conformers followed the order Tg > Cg > Ts > Cs for the neutral (unprotonated) form of 1 and Ts > Tg > Cs > Cg for its piperidine N-protonated form.

View Article and Find Full Text PDF