Publications by authors named "Etienne Cabane"

Chemical force microcopy, a variation of atomic force microscopy, opened the door to visualize chemical nano-properties of various materials in their natural state. The key function of this method is given by translating adhesion forces between a functionalized tip and the sample to chemical surface behavior. In force titration, these adhesion forces are studied in different pH buffers, which allows estimating the p value of the analyzed surface.

View Article and Find Full Text PDF

Wood is considered the most important renewable resource for a future sustainable bioeconomy. It is traditionally used in the building sector, where it has gained importance in recent years as a sustainable alternative to steel and concrete. Additionally, it is the basis for the development of novel bio-based functional materials.

View Article and Find Full Text PDF

Peak force infrared (PFIR) microscopy is a recently developed approach to acquire multiple chemical and physical material properties simultaneously and with nanometer resolution: topographical features, infrared (IR)-sensitive maps, adhesion, stiffness, and locally resolved IR spectra. This multifunctional mapping is enabled by the ability of an atomic force microscope tip in the peak force tapping mode to detect photothermal expansion of the sample. We report the use of the PFIR to characterize the chemical modification of bio-based native and intact wooden matrices, which has evolved into an increasingly active research field.

View Article and Find Full Text PDF

The hierarchical and porous wood structure provides a stable scaffold to design functionalized lignocellulosic materials with extended properties by chemical modification techniques. However, proper nanoscale characterization methods for these novel materials are needed to confirm the presence of the added functionality and to locate the introduced functional groups with high spatial resolution. Chemical force microscopy is a suitable characterization method to distinguish chemical surface characteristics by scanning the samples surface with a functionalized tip.

View Article and Find Full Text PDF

The complex hierarchical structures of biological materials in combination with outstanding property profiles are great sources of inspiration for material scientists. Based on these characteristic features, the structure of wood has been increasingly exploited to fabricate novel hierarchical and functional materials. With delignification treatments, the density and chemistry of wood can be altered, resulting in hierarchical cellulose scaffolds with enhanced porosity for the fabrication of novel hybrid materials.

View Article and Find Full Text PDF

In the current quest for the design of advanced complex materials, the functionalization of biological materials having hierarchical structures has been of high interest. In the case of lignocellulosic materials, various modification techniques have allowed one to obtain materials with outstanding properties. However, the control over the spatial distribution of the modification inside the wood scaffold, which is an important parameter to obtain the desired properties, has yet to be understood.

View Article and Find Full Text PDF

Timber-concrete composites require reliable connections between both components, which are usually obtained by metal fasteners or slots in the wood. In this study, an alternative approach is presented based on a fully glued connection in combination with a primer treated wood surface, to enhance the compatibility and the adhesion properties at the interface between beech wood and concrete. Prior to the gluing and the concrete application in a wet-on-wet process, the wood surface was functionalised with a xerogel obtained by means of a sol-gel process, consisting of two layers of silane nanofilms, with different functional groups, which are capable of undergoing further chemical crosslinking reactions with the adhesive.

View Article and Find Full Text PDF

In this study, the chemical modification of bulk beech wood is described along with its utilization as biosorbent for the remediation of copper from water. The material was prepared by esterification using anhydrides, and reaction conditions were optimized to propose a greener process, in particular by reducing the amount of solvent. This modification yields a lignocellulosic material whose native structure is preserved, with an increased amount of carboxylic groups (up to 3 mmol/g).

View Article and Find Full Text PDF

Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used.

View Article and Find Full Text PDF

A "grafting-from" polymerization approach within and at the complex and heterogeneous macromolecular assembly of wood cell walls is shown. The approach allows for the implementation of novel functionalities in renewable and functional wood-based materials. The native wood structure is retained and used as a hierarchical multiscale framework for a modular two-step polymerization process.

View Article and Find Full Text PDF

Wood has an excellent mechanical performance, but wider utilization of this renewable resource as an engineering material is limited by unfavorable properties such as low dimensional stability upon moisture changes and a low durability. However, some wood species are known to produce a wood of higher quality by inserting mainly phenolic substances in the already formed cell walls--a process so-called heartwood formation. In the present study, we used the heartwood formation in black locust (Robinia pseudoacacia) as a source of bioinspiration and transferred principles of the modification in order to improve spruce wood properties (Picea abies) by a chemical treatment with commercially available flavonoids.

View Article and Find Full Text PDF

This review focuses on smart nano-materials built of stimuli-responsive (SR) polymers and will discuss their numerous applications in the biomedical field. The authors will first provide an overview of different stimuli and their corresponding, responsive polymers. By introducing myriad functionalities, SR polymers present a wide range of possibilities in the design of stimuli-responsive devices, making use of virtually all types of polymer constructs, from self-assembled structures (micelles, vesicles) to surfaces (polymer brushes, films) as described in the second section of the review.

View Article and Find Full Text PDF