Publications by authors named "Etienne Borre"

The use of a bottom-up approach to the fabrication of nanopatterned functional surfaces, which are capable to respond to external stimuli, is of great current interest. Herein, the preparation of light-responsive, linear supramolecular metallopolymers constituted by the ideally infinite repetition of a ditopic ligand bearing an azoaryl moiety and Co(II) coordination nodes is described. The supramolecular polymerization process is followed by optical spectroscopy in dimethylformamide solution.

View Article and Find Full Text PDF

Two novel supramolecular metallo-heteropolymers bearing a photo-isomerizable telechelic bis-terpyridine ligand and either Fe(ii) or Co(ii) coordination metal were synthesized. Both polymers induced gelation of organic solvents at a concentration as low as 0.12 wt% yielding thixotropic gels.

View Article and Find Full Text PDF

A series of amphiphilic metallopolymers is described that features zinc(II) bis-terpyridine coordination nodes as well as a backbone with hydrophobic azoaryl moieties and hydrophilic phenylene-ethynylene units decorated with PEG brushes. Using such metallopolymers at very low concentration, stable, photo-responsive and self-healing hydrogels are obtained. UV irradiation of the gel allows modulation of the degree of hydrophobic π-π interactions between photoisomerizable azoaryl units and a polarity switch that overall induces a fast gel-to-sol transition.

View Article and Find Full Text PDF

Supramolecular functional materials able to respond to external stimuli have several advantages over their classical covalent counterparts. The preparation of soft actuators with the ability to respond to external stimuli in a spatiotemporal fashion, to self-repair, and to show directional motion, is currently one of the most challenging research goals. Herein, we report a series of metallopolymers based on zinc(II)-terpyridine coordination nodes and bearing photoisomerizable diazobenzene units and/or solubilizing luminescent phenylene-ethynylene moieties.

View Article and Find Full Text PDF

A silver-free methodology was developed for the synthesis of unprecedented N-heterocyclic carbene ruthenium indenylidene complexes bearing a bidentate picolinate ligand. The highly stable (SIPr)(picolinate)RuCl(indenylidene) complex 4a (SIPr = 1,3-bis(2-6-diisopropylphenyl)imidazolidin-2-ylidene) demonstrated excellent latent behaviour in ring closing metathesis (RCM) reaction and could be activated in the presence of a Brønsted acid. The versatility of the catalyst 4a was subsequently demonstrated in RCM, cross-metathesis (CM) and enyne metathesis reactions.

View Article and Find Full Text PDF

A novel class of palladium(II) and platinum(II) complexes bearing tridentate bis-aryloxide triazole ligands was prepared by using straightforward and high-yielding synthetic routes. The complexes were fully characterized and the molecular structures of four derivatives were unambigously determined by single-crystal X-ray diffractometric analyses. For the most promising luminescent Pt(II) derivatives, further experimental investigations were carried out to characterize their photophysical features and to ascertain the nature of the emitting excited state by means of electronic absorption, steady-state, and time-resolved emission techniques in different conditions.

View Article and Find Full Text PDF

Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands.

View Article and Find Full Text PDF

Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

View Article and Find Full Text PDF

In this study, a new pyridinium-tagged Ru complex was designed and anchored onto sulfonated silica, thereby forming a robust and highly active supported olefin-metathesis pre-catalyst for applications under batch and continuous-flow conditions. The involvement of an oxazine-benzylidene ligand allowed the reactivity of the formed Ru pre-catalyst to be efficiently controlled through both steric and electronic activation. The oxazine scaffold facilitated the introduction of the pyridinium tag, thereby affording the corresponding cationic pre-catalyst in good yield.

View Article and Find Full Text PDF

Seven novel Hoveyda-Grubbs precatalysts bearing an aminosulfonyl function are reported. Kinetic studies indicate an activity enhancement compared to Hoveyda's precatalyst. A selection of these catalysts was investigated with various substrates in ring-closing metathesis of dienes or enynes and cross metathesis.

View Article and Find Full Text PDF