Research towards efficient and environmentally friendly thermoelectrics proposes silicon nanostructures as possible candidates through reduction of the phononic thermal conductivity. However, there is scarce literature about experimental measurements of the thermoelectric figure-of-merit on actual crystalline silicon devices. This article reports on the fabrication and full thermoelectric characterization of crystalline 60 nm thick membranes.
View Article and Find Full Text PDFWe propose a simple structure for passive sky radiative cooling made of a surface-textured layer of silica on a silver substrate. Using electromagnetic simulations, we show that the optical properties of such structures are near-ideal, due to the large reflectivity of silver in the solar spectrum and the large emissivity of silica in the infrared. Surface texturation is key to obtain near-unity emissivity in the infrared.
View Article and Find Full Text PDFThe thermal behavior of a thermophotovoltaic system composed of a metallo-dielectric spectrally selective radiator at high temperature and a GaSb photovoltaic cell in the far field is investigated. Using a coupled radiative, electrical and thermal model, we highlight that, without a large conductive-convective heat transfer coefficient applied to the cell, the rise in temperature of the photovoltaic cell induces dramatic efficiency losses. We then investigate solutions to mitigate thermal effects, such as radiative cooling or the decrease of the emissivity or the temperature of the radiator.
View Article and Find Full Text PDFEasy-to-fabricate, high-temperature, thermally-stable radiators are critical elements for developing efficient and sustainable thermophotovoltaic energy conversion devices. In this frame, a trilayer-on-substrate structure is selected. It is composed of a refractory metal -molybdenum - constituting the substrate and an intermediate thin film sandwiched between two hafnia transparent layers.
View Article and Find Full Text PDFIn near-field thermophotovoltaics, a substantial enhancement of the electrical power output is expected as a result of the larger photogeneration of electron-hole pairs due to the tunneling of evanescent modes from the thermal radiator to the photovoltaic cell. The common low-injection approximation, which considers that the local carrier density due to photogeneration is moderate in comparison to that due to doping, needs therefore to be assessed. By solving the full drift-diffusion equations, the existence of high-injection effects is studied in the case of a GaSb p-on-n junction cell and a radiator supporting surface polaritons.
View Article and Find Full Text PDFWe investigate the thermal radiative emission of few-layer structures deposited on a metallic substrate and its dependence on temperature with the Fluctuational Electrodynamics approach. We highlight the impact of the variations of the optical properties of metallic layers on their temperature-dependent emissivity. Fabry-Pérot spectral selection involving at most two transparent layers and one thin reflective layer leads to well-defined peaks and to the amplification of the substrate emission.
View Article and Find Full Text PDFThe impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap.
View Article and Find Full Text PDFIn this paper we present a systematic and well controlled procedure for building atomistic amorphous/crystalline interfaces in silicon, dedicated to the molecular dynamics simulations of superlattices and core/shell nanowires. The obtained structures depend on the technique used to generate the amorphous phase and their overall quality is estimated through comparisons with structural information and interfacial energies available from experimental and theoretical results. While most of the related studies focus on a single planar interface, we consider here both the generation of multiple superlattice planar interfaces and core/shell nanowire structures.
View Article and Find Full Text PDF