Background: Blood lipid concentrations display high interindividual variability in response to dietary interventions, partly due to genetic factors. Existing studies have focused on single nucleotide polymorphisms (SNPs) analyzed individually, which only explain a limited fraction of the variability of these complex phenotypes.
Objective: We aimed to identify combinations of SNPs associated with the variability in LDL cholesterol and triglyceride (TG) concentration changes following 5 dietary interventions.
The gut microbiome encompasses trillions of residing microbes, mainly bacteria, which play a crucial role in maintaining the physiological and metabolic health of the host. The gut microbiome has been associated with several diseases, including cardiovascular disease (CVD). A growing body of evidence suggests that an altered gut environment and gut-microbiome-derived metabolites are associated with CVD events.
View Article and Find Full Text PDFControversies persist concerning the association between intake of dietary saturated fatty acids (SFAs) and cardiovascular disease risk. We compared the impact of consuming equal amounts of SFAs from cheese and butter on cardiometabolic risk factors. In a multicenter, crossover, randomized controlled trial, 92 men and women with abdominal obesity and relatively low HDL-cholesterol concentrations were assigned to sequences of 5 predetermined isoenergetic diets of 4 wk each separated by 4-wk washouts: 2 diets rich in SFAs (12.
View Article and Find Full Text PDFClinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus.
View Article and Find Full Text PDFBackground And Aim: Bacterial metabolites produced in the bowel are potentially related to the genesis of colorectal cancer. Butyrate is protective against cancer, whereas hydrogen sulfide and oxygen free radicals can be toxic to the epithelium. The present study was designed to quantitate Eubacterium rectale, Faecalibacterium prausnitzii (both butyrate-producing bacteria), Desulfovibrio (sulfate-reducing bacteria), and Enterococcus faecalis (that produces extracellular superoxide) in the feces of patients with colorectal cancer.
View Article and Find Full Text PDF