Quantifying and controlling fugitive methane emissions from oil and gas facilities remains essential for addressing climate goals, but the costs associated with monitoring millions of production sites remain prohibitively expensive. Current thinking, supported by measurement and simple dispersion modelling, assumes single-digit parts-per-million instrumentation is required. To investigate instrument response, the inlets of three trace-methane (sub-ppm) analyzers were collocated on a facility designed to release gas of known composition at known flow rates between 0.
View Article and Find Full Text PDFRecent studies indicate emission factors used to generate bottom-up methane inventories may have considerable regional variability. The US's Environmental Protection Agency's emission factors for plugged and unplugged abandoned oil and gas wells are largely based on measurement of historic wells and estimated at 0.4 g and 31 g CH well h respectively.
View Article and Find Full Text PDFStudying the indoor dynamics that impact particles is crucial in order to understand indoor air chemistry and assess overall human exposure to particles. This work investigates spatial gradients in particle concentration, caused by indoor transport and loss mechanisms. We conducted a variety of cooking experiments during the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign in June 2018 that allowed us to probe these mechanisms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
Wet and dry deposition remove aerosols from the atmosphere, and these processes control aerosol lifetime and thus impact climate and air quality. Dry deposition is a significant source of aerosol uncertainty in global chemical transport and climate models. Dry deposition parameterizations in most global models were developed when few particle deposition measurements were available.
View Article and Find Full Text PDFBlack carbon (BC) aerosol plays an important role in the Earth's climate system because it absorbs solar radiation and therefore potentially warms the climate; however, BC can also act as a seed for cloud particles, which may offset much of its warming potential. If BC acts as an ice nucleating particle (INP), BC could affect the lifetime, albedo, and radiative properties of clouds containing both supercooled liquid water droplets and ice particles (mixed-phase clouds). Over 40% of global BC emissions are from biomass burning; however, the ability of biomass burning BC to act as an INP in mixed-phase cloud conditions is almost entirely unconstrained.
View Article and Find Full Text PDF