Publications by authors named "Ethan Taylor"

Non-physiological disorders release dopamine into extracellular brain fluid to induce neurodegenerative brain diseases. The harmful mechanism of dopamine overflow is attributed to the dopamine-mediated production of hydroxyl radicals, suggesting that transition metal copper which is high in the brain is involved in promoting dopamine oxidation. MPP+ , an intermediate formed from the conversion of MPTP, is one of the most potent dopamine-releasing agents.

View Article and Find Full Text PDF

The public is increasingly reporting using cannabis for anxiety relief. Both cannabis use and the endocannabinoid system have been connected with anxiety relief/anxiolytic properties, but these relationships are complex, and the underlying mechanisms for them are unclear. : Work is needed to understand how the endocannabinoid system, including the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may be impacted by the main constituents of cannabis, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD).

View Article and Find Full Text PDF

Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked -1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA.

View Article and Find Full Text PDF

The authors of this Comment are longstanding selenium investigators with a total of 200 or more published articles on selenium; the corresponding author (Margaret P [...

View Article and Find Full Text PDF

The proatlas, a bone located between the skull and the neural spines of the cervical vertebrae, is best known from reptiles. Most previous studies of the proatlas have centered on its developmental, debating the relationship between the proatlas and the cervical neural arches. The present study was intended as a description of the proatlas in the American alligator (Alligator mississippiensis) and an experimental test of its hypothesized role in venous blood and cerebrospinal fluid (CSF) distribution.

View Article and Find Full Text PDF

The epidural space of the American alligator (Alligator mississippiensis) is largely filled by a continuous venous sinus. This venous sinus extends throughout the trunk and tail of the alligator, and is continuous with the dural sinuses surrounding the brain. Segmental spinal veins (sl) link the spinal venous sinus (vs) to the somatic and visceral venous drainage.

View Article and Find Full Text PDF

Antimicrobial resistance is a significant concern worldwide; meanwhile, the impact of 3rd generation cephalosporin (3GC) antibiotics on the microbial communities of cattle and resistance within these communities is largely unknown. The objectives of this study were to determine the effects of two-dose ceftiofur crystalline-free acid (2-CCFA) treatment on the fecal microbiota and on the quantities of second-and third-generation cephalosporin, fluoroquinolone, and macrolide resistance genes in Holstein-Friesian dairy cows in the southwestern United States. Across three dairy farms, 124 matched pairs of cows were enrolled in a longitudinal study.

View Article and Find Full Text PDF

In humans and most mammals, there is a notch-like portal, the foramen of Luschka (or lateral foramen), which connects the lumen of the fourth ventricle with the subdural space. Gross dissection, light and scanning electron microscopy, and μCT analysis revealed the presence of a foramen of Luschka in the American alligator (Alligator mississippiensis). In this species, the foramen of Luschka is a notch in the dorsolateral wall of the pons immediately caudal to the peduncular base of the cerebellum, near the rostral end of the telovelar membrane over the fourth ventricle.

View Article and Find Full Text PDF

With solar cells reaching 26.1% certified efficiency, hybrid perovskites are now the most efficient thin film photovoltaic material. Though substantial effort has focussed on synthesis approaches and device architectures to further improve perovskite-based solar cells, more work is needed to correlate physical properties of the underlying film structure with device performance.

View Article and Find Full Text PDF

Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical.

View Article and Find Full Text PDF

Associations between dietary selenium status and the clinical outcome of many viral infections, including SARS-CoV-2, are well established. Multiple independent studies have documented a significant inverse correlation between selenium status and the incidence and mortality of COVID-19. At the molecular level, SARS-CoV-2 infection has been shown to decrease the expression of certain selenoproteins, both in vitro and in COVID-19 patients.

View Article and Find Full Text PDF

Background: COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity.

View Article and Find Full Text PDF

Coupling between light and matter strongly depends on the polarization of the electromagnetic field and the nature of excitations in a material. As hybrid perovskites emerge as a promising class of materials for light-based technologies such as LEDs, LASERs, and photodetectors, it is critical to understand how their microstructure changes the intrinsic properties of the photon emission process. While the majority of optical studies have focused on the spectral content, quantum efficiency and lifetimes of emission in various hybrid perovskite thin films and nanostructures, few studies have investigated other properties of the emitted photons such as polarization and emission angle.

View Article and Find Full Text PDF

In this review, the relevance of selenium (Se) to viral disease will be discussed paying particular attention to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19). Se, the active centre in selenoproteins has an ongoing history of reducing the incidence and severity of viral infections. Host Se deficiency increased the virulence of RNA viruses such as influenza A and coxsackievirus B3, the latter of which is implicated in the development of Keshan disease in north-east China.

View Article and Find Full Text PDF

The HIV-1 nef gene terminates in a 3'-UGA stop codon, which is highly conserved in the main group of HIV-1 subtypes, along with a downstream potential coding region that could extend the nef protein by 33 amino acids, if readthrough of the stop codon occurs. Antisense tethering interactions (ATIs) between a viral mRNA and a host selenoprotein mRNA are a potential viral strategy for the capture of a host selenocysteine insertion sequence (SECIS) element (Taylor et al, 2016) [1]. This mRNA hijacking mechanism could enable the expression of virally encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine (SeC).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between selenium and RNA viruses, specifically focusing on how the Zika virus (ZIKV) may impact selenoproteins that are crucial for brain health, especially in neonates.
  • Researchers found that ZIKV can bind to key human selenoprotein mRNAs, particularly those coding for thioredoxin reductase (TXNRD1) and selenoprotein P (SELENOP), leading to significant reductions in their protein levels after infection.
  • The findings imply that ZIKV may mimic the effects of a genetic disorder that inhibits selenoprotein synthesis, potentially causing severe neurological issues like microcephaly in infants through mechanisms unrelated
View Article and Find Full Text PDF

The atrophic form of age-related macular degeneration (dry AMD) affects nearly 200 million people worldwide. There is no Food and Drug Administration (FDA)-approved therapy for this disease, which is the leading cause of irreversible blindness among people over 50 y of age. Vision loss in dry AMD results from degeneration of the retinal pigmented epithelium (RPE).

View Article and Find Full Text PDF

Higher selenium status has been shown to improve the clinical outcome of infections caused by a range of evolutionally diverse viruses, including SARS-CoV-2. However, the impact of SARS-CoV-2 on host-cell selenoproteins remains elusive. The present study investigated the influence of SARS-CoV-2 on expression of selenoprotein mRNAs in Vero cells.

View Article and Find Full Text PDF

The rapid and reliable recognition of nucleic acid sequences is essential to a broad range of fields including genotyping, gene expression analysis, and pathogen screening. For viral detection in particular, the capability is critical for optimal therapeutic response and preventing disease transmission. Here, we report an approach for detecting identifying sequence motifs within genome-scale single-strand DNA and RNA based on solid-state nanopores.

View Article and Find Full Text PDF

Background: High sodium intake can up-regulate the level of renal serum- and glucocorticoid-inducible kinase-1 (SGK1), which plays a pivotal role in controlling blood pressure via activation of the epithelial sodium channel (ENaC), which can lead to salt-sensitive hypertension. Increased potassium intake, or a vegetarian diet, counteracts salt-sensitive hypertension, but the underlying mechanisms are not fully understood.

Methods: Bioinformatics and molecular modeling were used to identify G-quadruplex (G4) and their conformations in the SGK1 promoter.

View Article and Find Full Text PDF

Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status.

View Article and Find Full Text PDF

Glutathione peroxidases (GPX), a family of antioxidant selenoenzymes, functionally link selenium and glutathione, which both show correlations with clinical outcomes in COVID-19. Thus, it is highly significant that cytosolic GPX1 has been shown to interact with an inactive C145A mutant of M, the main cysteine protease of SARS-CoV-2, but not with catalytically active wild-type M. This seemingly anomalous result is what might be expected if GPX1 is a substrate for the active protease, leading to its fragmentation.

View Article and Find Full Text PDF

Human DNA is a very sensitive macromolecule and slight changes in the structure of DNA can have disastrous effects on the organism. When nucleotides are modified, or changed, the resulting DNA sequence can lose its information, if it is part of a gene, or it can become a problem for replication and repair. Human cells can regulate themselves by using a process known as DNA methylation.

View Article and Find Full Text PDF