Hypertriglyceridemia is characterized by elevated triglyceride levels in the blood, which increases the risk of cardiovascular disease and pancreatitis. This condition stems from multiple factors including lifestyle choices, genetics, and conditions such as diabetes and metabolic syndrome. Apolipoprotein C-III (APOC3), a protein for lipid metabolism, hinders enzymes necessary for breaking down triglycerides and thus plays a key role in hypertriglyceridemia.
View Article and Find Full Text PDFGlucagon-like peptide-1 receptor (GLP1R) agonists and dipeptidyl peptidase 4 inhibitors are widely prescribed diabetes drugs due to their ability to stimulate insulin secretion from remaining β cells and to reduce caloric intake. Unfortunately, they fail to increase human β cell proliferation. Small-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) are able to induce adult human β cell proliferation, but rates are modest (~2%), and their specificity to β cells is limited.
View Article and Find Full Text PDFRecently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9--position of harmine to synthesize 29 harmine-based analogs.
View Article and Find Full Text PDFSmall molecule inhibitors of dual specificity, tyrosine phosphorylation-regulated kinase 1A (DYRK1A), including harmine and others, are able to drive human β cell regeneration. While DYRK1A is certainly a target of this class, whether it is the only or the most important target is uncertain. Here, we employ a combined pharmacologic and genetic approach to refine the potential mitogenic targets of the DYRK1A inhibitor family in human islets.
View Article and Find Full Text PDFSmall-molecule inhibitors of dual-specificity tyrosine-regulated kinase 1A (DYRK1A) induce human beta cells to proliferate, generating a labeling index of 1.5%-3%. Here, we demonstrate that combined pharmacologic inhibition of DYRK1A and transforming growth factor beta superfamily (TGFβSF)/SMAD signaling generates remarkable further synergistic increases in human beta cell proliferation (average labeling index, 5%-8%, and as high as 15%-18%), and increases in both mouse and human beta cell numbers.
View Article and Find Full Text PDFDYRK1A has been implicated as an important drug target in various therapeutic areas, including neurological disorders and oncology. DYRK1A has more recently been shown to be involved in pathways regulating human β-cell proliferation, thus making it a potential therapeutic target for both Type 1 and Type 2 diabetes. Our group, using a high-throughput phenotypic screen, identified harmine that is able to induce β-cell proliferation both in vitro and in vivo.
View Article and Find Full Text PDFMethods Mol Biol
February 2019
Diabetes is the result of the insufficiency or dysfunction of pancreatic beta cells alone or in combination with insulin resistance. The replacement or regeneration of beta cells can effectively reverse diabetes in humans and rodents. Therefore, the identification of novel small molecules that promote pancreatic beta-cell proliferation is an attractive approach for diabetic therapy.
View Article and Find Full Text PDF