Synaptic signaling involves the release of neurotransmitter from presynaptic active zones (AZs). Proteins that regulate vesicle exocytosis cluster at AZs, composing the cytomatrix at the active zone (CAZ). At the Drosophila neuromuscular junction (NMJ), the small GTPase Rab3 controls the distribution of CAZ proteins across release sites, thereby regulating the efficacy of individual AZs.
View Article and Find Full Text PDFAt synapses, the release of neurotransmitter is regulated by molecular machinery that aggregates at specialized presynaptic release sites termed active zones. The complement of active zone proteins at each site is a determinant of release efficacy and can be remodeled to alter synapse function. The small GTPase Rab3 was previously identified as playing a novel role that controls the distribution of active zone proteins to individual release sites at the Drosophila neuromuscular junction.
View Article and Find Full Text PDFSynaptic communication requires the controlled release of synaptic vesicles from presynaptic axon terminals. Release efficacy is regulated by the many proteins that comprise the presynaptic release apparatus, including Ca(2+) channels and proteins that influence Ca(2+) channel accumulation at release sites. Here we identify Drosophila RIM (Rab3 interacting molecule) and demonstrate that it localizes to active zones at the larval neuromuscular junction.
View Article and Find Full Text PDFSynaptic connections can be stably maintained for prolonged periods, yet can be rapidly disassembled during the developmental refinement of neural circuitry and following cytological insults that lead to neurodegeneration. To date, the molecular mechanisms that determine whether a synapse will persist versus being remodeled or eliminated remain poorly understood. Mutations in Drosophila stathmin were isolated in two independent genetic screens that sought mutations leading to impaired synapse stability at the Drosophila neuromuscular junction (NMJ).
View Article and Find Full Text PDFSynaptic transmission requires the localization of presynaptic release machinery to active zones. Mechanisms regulating the abundance of such synaptic proteins at individual release sites are likely determinants of site-specific synaptic efficacy. We now identify a role for the small GTPase Rab3 in regulating the distribution of presynaptic components to active zones.
View Article and Find Full Text PDFRecent findings suggest that the neurexin-neuroligin link promotes both GABAergic and glutamatergic synaptogenesis, but the mechanism by which neurexins influence the clustering of appropriate neuroligins and postsynaptic differentiation remains unclear. Previous studies suggested that the presence or absence of alternatively spliced residues at splice site 4 (S4) in the neurexin LNS domain may regulate neurexin function. We demonstrate that addition of the S4 insert selectively reduces the ability of neurexin-1beta to cluster neuroligin-1/3/4 and glutamatergic postsynaptic proteins, although clustering of neuroligin-2 and GABAergic postsynaptic proteins remain strong.
View Article and Find Full Text PDFCentral neurons develop and maintain molecularly distinct synaptic specializations for excitatory and inhibitory transmitters, often only microns apart on their dendritic arbor. Progress towards understanding the molecular basis of synaptogenesis has come from several recent studies using a coculture system of non-neuronal cells expressing molecules that generate presynaptic or postsynaptic "hemi-synapses" on contacting neurons. Together with molecular properties of these protein families, such studies have yielded interesting clues to how glutamatergic and GABAergic synapses are assembled.
View Article and Find Full Text PDFFormation of synaptic connections requires alignment of neurotransmitter receptors on postsynaptic dendrites opposite matching transmitter release sites on presynaptic axons. beta-neurexins and neuroligins form a trans-synaptic link at glutamate synapses. We show here that neurexin alone is sufficient to induce glutamate postsynaptic differentiation in contacting dendrites.
View Article and Find Full Text PDF