Publications by authors named "Ethan Lau"

The pathophysiological mechanisms underlying bipolar (BD) and major depressive disorders (MDD) are multifactorial but likely involve synaptic dysfunction and dysregulation. There are multiple synaptic proteins but three synaptic proteins, namely SNAP-25, PSD-95, and synaptophysin, have been widely studied for their role in synaptic function in human brain postmortem studies in BD and MDD. These studies have yielded contradictory results, possibly due to the small sample size and sourcing material from different cortical regions of the brain.

View Article and Find Full Text PDF

Purpose: Necrotizing enterocolitis (NEC) is one of the most distressing gastrointestinal emergencies affecting neonates. Amniotic fluid stem cells (AFSC) improve intestinal injury and survival in experimental NEC but are difficult to administer. In this study, we evaluated whether conditioned medium (CM) derived from human AFSC have protective effects.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) is a dynamic organelle that has many functions including protein synthesis, lipid synthesis, and calcium metabolism. Any perturbation in the ER such as accumulation of unfolded or misfolded proteins in the ER lumen causes ER stress. ER stress has been implicated in many intestinal inflammatory diseases.

View Article and Find Full Text PDF

Purpose: Monitoring disease progression is crucial to improve the outcome of necrotizing enterocolitis (NEC). A previous study indicates that intestinal wall flow velocity was reduced in NEC pups from the initial stages of the disease. This study aims to investigate whether splanchnic perfusion via the superior mesenteric artery (SMA) (i) is altered during NEC development and (ii) can be used as a monitoring tool to assess disease progression.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a devastating disease of premature infants with high mortality rate, indicating the need for precision treatment. NEC is characterized by intestinal inflammation and ischemia, as well derangements in intestinal microcirculation. Remote ischemic conditioning (RIC) has emerged as a promising tool in protecting distant organs against ischemia-induced damage.

View Article and Find Full Text PDF

Background: Vitamin D deficiency is associated with intestinal barrier dysfunction, which contributes to pathogenesis of acute intestinal injury in children. We aim to investigate the effects of vitamin D on intestinal injury in intestinal epithelial cells and organoids.

Methods: Lipopolysaccharide (LPS) was used to induce injury in intestinal epithelial cells (IEC-18) and organoids, and the effect of vitamin D was assessed.

View Article and Find Full Text PDF