Front Cell Infect Microbiol
January 2024
Apicomplexan parasites that reside within a parasitophorous vacuole harbor a conserved pore-forming protein that enables small-molecule transfer across the parasitophorous vacuole membrane (PVM). In parasites that cause malaria, this nutrient pore is formed by EXP2 which can complement the function of GRA17, an orthologous protein in EXP2, however, has an additional function in parasites, serving also as the pore-forming component of the protein export machinery PTEX. To examine how EXP2 can play this additional role, transgenes that encoded truncations of EXP2, GRA17, hybrid GRA17-EXP2, or EXP2 under the transcriptional control of different promoters were expressed in EXP2 knockdown parasites to determine which could complement EXP2 function.
View Article and Find Full Text PDFPlasmodium parasites that cause the disease malaria have developed an elaborate trafficking pathway to facilitate the export of hundreds of effector proteins into their host cell, the erythrocyte. In this review, we outline how certain effector proteins contribute to parasite survival, virulence, and immune evasion. We also highlight how parasite proteins destined for export are recognised at the endoplasmic reticulum to facilitate entry into the export pathway and how the effector proteins are able to transverse the bounding parasitophorous vaculoar membrane via the Plasmodium translocon of exported proteins to gain access to the host cell.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.