We conducted a systematic review and meta-analysis on the relationship between the neutrophil to lymphocyte ratio (NLR) and coronary artery abnormalities (CAA) in patients with Kawasaki disease (KD), according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements. We searched PubMed, Scopus, Web of Science, Embase, TRIP, Google Scholar, and ProQuest up to the 8th of August 2022. This was done to retrieve eligible studies.
View Article and Find Full Text PDFSynucleinopathies, including Parkinson's disease (PD), Lewy body dementia (LBD), Alzheimer's disease with amygdala restricted Lewy bodies (AD/ALB), and multiple system atrophy (MSA) comprise a spectrum of neurodegenerative disorders characterized by the presence of distinct pathological α-synuclein (αSyn) inclusions. Experimental and pathological studies support the notion that αSyn aggregates contribute to cellular demise and dysfunction with disease progression associated with a prion-like spread of αSyn aggregates via conformational templating. The initiating event(s) and factors that contribute to diverse forms of synucleinopathies remain poorly understood.
View Article and Find Full Text PDFMultiple system atrophy (MSA) is an insidious middle age-onset neurodegenerative disease that clinically presents with variable degrees of parkinsonism and cerebellar ataxia. The pathological hallmark of MSA is the progressive accumulation of glial cytoplasmic inclusions (GCIs) in oligodendrocytes that are comprised of α-synuclein (αSyn) aberrantly polymerized into fibrils. Experimentally, MSA brain samples display a high level of seeding activity to induce further αSyn aggregation by a prion-like conformational mechanism.
View Article and Find Full Text PDFPathologic intracellular inclusions formed from polymers of misfolded α-synuclein (αsyn) protein define a group of neurodegenerative diseases termed synucleinopathies which includes Parkinson's disease (PD). Prion-like recruitment of endogenous cellular αsyn has been demonstrated to occur in animal models of synucleinopathy, whereby misfolded αsyn can induce further pathologic αsyn inclusions to form through a prion-like mechanism. It has been suggested that misfolded αsyn may assume differing conformations which lead to varied clinical and pathological manifestations of disease; this phenomenon bears similarities to that of prion strains whereby the same misfolded protein can produce unique diseases.
View Article and Find Full Text PDFα-synuclein (αsyn) forms pathologic inclusions in several neurodegenerative diseases termed synucleinopathies. The inclusions are comprised of αsyn fibrils harboring prion-like properties. Prion-like activity of αsyn has been studied by intracerebral injection of fibrils into mice, where the presence of a species barrier requires the use of mouse αsyn.
View Article and Find Full Text PDF