The reaction of Cl atoms with CH3D proceeds either by abstraction of hydrogen to produce HCl + CH2D or by abstraction of deuterium to produce DCl + CH3. Using Cl atoms with different amounts of translational energy, produced by photolysis of Cl2 with 309, 355, or 416 nm light, reveals the influence of translational energy on the relative reaction probability for the two channels. These measurements give an estimate of the energy barrier for the reaction for comparison to theory and indicate that tunneling is the dominant reaction mechanism at low collision energies.
View Article and Find Full Text PDF