High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic malignancy in industrialized countries and has limited treatment options. Targeting ataxia-telangiectasia and Rad3-related/cell-cycle checkpoint kinase 1 (CHK1)-mediated S-phase and G-M-phase cell-cycle checkpoints has been a promising therapeutic strategy in HGSOC. To improve the efficacy of CHK1 inhibitor (CHK1i), we conducted a high-throughput drug combination screening in HGSOC cells.
View Article and Find Full Text PDFPARP inhibitors (PARPi) have been effective in high-grade serous ovarian cancer (HGSOC), although clinical activity is limited against wild type HGSOC. The nearly universal loss of normal p53 regulation in HGSOCs causes dysfunction in the G1/S checkpoint, making tumor cells reliant on Chk1-mediated G2/M cell cycle arrest for DNA repair. Therefore, Chk1 is a reasonable target for a combination strategy with PARPi in treating wild type HGSOC.
View Article and Find Full Text PDFThe aim of our study was to evaluate possible synergistic cytotoxic effects of the combination treatment with the BH3-mimetic ABT-263 and the PARP inhibitor BMN 673 in high-grade serous ovarian cancer (HGSOC) cells using clinically achievable concentrations of each drug. In vitro cytotoxic effects of ABT-263 and BMN 673 were assessed by XTT assay in three HGSOC cell lines: OVCAR3, OVCAR8, and OV90 cells. Combination index values and synergy/antagonism volumes were used to determine synergy.
View Article and Find Full Text PDF