Publications by authors named "Ethan Bier"

Insecticide resistance (IR) poses a significant global challenge to public health and welfare. Here, we develop a locally-acting unitary self-eliminating allelic-drive system, inserted into the Drosophila melanogaster yellow (y) locus. The drive cassette encodes both Cas9 and a single gRNA to bias inheritance of the favored wild-type (1014 L) allele over the IR (1014 F) variant of the voltage-gated sodium ion channel (vgsc) target locus.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving gene editing techniques in a specific insect model that spreads Chagas disease, caused by parasites.
  • Researchers tested methods to deliver CRISPR-Cas9 gene editing tools to female insects' developing eggs and confirmed these methods led to successful changes in eye and cuticle color.
  • The findings pave the way for future gene editing in this insect species, potentially aiding the development of new strategies to control Chagas disease transmission.
View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are repaired by a hierarchically regulated network of pathways. Factors influencing the choice of particular repair pathways, however remain poorly characterized. Here we develop an Integrated Classification Pipeline (ICP) to decompose and categorize CRISPR/Cas9 generated mutations on genomic target sites in complex multicellular insects.

View Article and Find Full Text PDF

Vector control is a crucial strategy for malaria elimination by preventing infection and reducing disease transmission. Most gains have been achieved through insecticide-treated nets (ITNs) and indoor residual spraying (IRS), but the emergence of insecticide resistance among mosquitoes calls for new tools to be applied. Here, we present the development of a highly effective murine monoclonal antibody, targeting the N-terminal region of the gametocyte antigen Pfs230, that can decrease the infection prevalence by > 50% when fed to mosquitoes with gametocytes in an artificial membrane feeding system.

View Article and Find Full Text PDF

The field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment.

View Article and Find Full Text PDF

CRISPR-interference (CRISPRi), a highly effective method for silencing genes in mammalian cells, employs an enzymatically dead form of Cas9 (dCas9) complexed with one or more guide RNAs (gRNAs) with 20 nucleotides (nt) of complementarity to transcription initiation sites of target genes. Such gRNA/dCas9 complexes bind to DNA, impeding transcription of the targeted locus. Here, we present an alternative gene-suppression strategy using active Cas9 complexed with truncated gRNAs (tgRNAs).

View Article and Find Full Text PDF

Development of effective therapies against SARS-CoV-2 infections relies on mechanistic knowledge of virus-host interface. Abundant physical interactions between viral and host proteins have been identified, but few have been functionally characterized. Harnessing the power of fly genetics, we develop a comprehensive Drosophila COVID-19 resource (DCR) consisting of publicly available strains for conditional tissue-specific expression of all SARS-CoV-2 encoded proteins, UAS-human cDNA transgenic lines encoding established host-viral interacting factors, and GAL4 insertion lines disrupting fly homologs of SARS-CoV-2 human interacting proteins.

View Article and Find Full Text PDF

The core components of CRISPR-based gene drives, Cas9 and guide RNA (gRNA), either can be linked within a self-contained single cassette (full gene-drive, fGD) or be provided in two separate elements (split gene-drive, sGD), the latter offering greater control options. We previously engineered split systems that could be converted genetically into autonomous full drives. Here, we examine such dual systems inserted at the spo11 locus that are recoded to restore gene function and thus organismic fertility.

View Article and Find Full Text PDF

Repair of double-strand breaks (DSBs) in somatic cells is primarily accomplished by error-prone nonhomologous end joining and less frequently by precise homology-directed repair preferentially using the sister chromatid as a template. Here, a system performs efficient somatic repair of both DSBs and single-strand breaks (SSBs) using intact sequences from the homologous chromosome in a process we refer to as homologous chromosome-templated repair (HTR). Unexpectedly, HTR-mediated allelic conversion at the locus was more efficient (40 to 65%) in response to SSBs induced by Cas9-derived nickases D10A or H840A than to DSBs induced by fully active Cas9 (20 to 30%).

View Article and Find Full Text PDF

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based "active genetic" elements developed in 2015 bypassed the fundamental rules of traditional genetics. Inherited in a super-Mendelian fashion, such selfish genetic entities offered a variety of potential applications including: gene-drives to disseminate gene cassettes carrying desired traits throughout insect populations to control disease vectors or pest species, allelic drives biasing inheritance of preferred allelic variants, neutralizing genetic elements to delete and replace or to halt the spread of gene-drives, split-drives with the core constituent Cas9 endonuclease and guide RNA (gRNA) components inserted at separate genomic locations to accelerate assembly of complex arrays of genetic traits or to gain genetic entry into novel organisms (vertebrates, plants, bacteria), and interhomolog based copying systems in somatic cells to develop tools for treating inherited or infectious diseases. Here, we summarize the substantial advances that have been made on all of these fronts and look forward to the next phase of this rapidly expanding and impactful field.

View Article and Find Full Text PDF

Progress in gene-drive research has stimulated discussion and debate on ethical issues including community engagement and consent, policy and governance, and decision-making involved in development and deployment. Many organizations, academic institutions, foundations, and individual professionals have contributed to ensuring that these issues are considered prior to the application of gene-drive technology. Central topics include co-development of the technology with local stakeholders and communities and reducing asymmetry between developers and end-users.

View Article and Find Full Text PDF

A recurring target-site mutation identified in various pests and disease vectors alters the voltage gated sodium channel (vgsc) gene (often referred to as knockdown resistance or kdr) to confer resistance to commonly used insecticides, pyrethroids and DDT. The ubiquity of kdr mutations poses a major global threat to the continued use of insecticides as a means for vector control. In this study, we generate common kdr mutations in isogenic laboratory Drosophila strains using CRISPR/Cas9 editing.

View Article and Find Full Text PDF

Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a "gene drive," to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of gene conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double-strand DNA break (DSB) is feasible in the female mouse germline. In the male germline, however, all DSBs were instead repaired by end joining (EJ) mechanisms to form an "insertion/deletion" (indel) mutation.

View Article and Find Full Text PDF

Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles stephensi displays efficient allelic conversion through males but generates frequent drive-resistant mutant alleles when passed through females.

View Article and Find Full Text PDF

genes determine positional codes along the head-to-tail axis. Here, we replaced the entire () locus, which controls the development of the proboscis and maxillary palps, with that from , a related species with highly modified mouthparts. The replacement rescues most aspects of adult proboscis morphology; however, the shape and orientation of maxillary palps were modified, resembling and closely related species.

View Article and Find Full Text PDF
Gene drives gaining speed.

Nat Rev Genet

January 2022

Gene drives are selfish genetic elements that are transmitted to progeny at super-Mendelian (>50%) frequencies. Recently developed CRISPR-Cas9-based gene-drive systems are highly efficient in laboratory settings, offering the potential to reduce the prevalence of vector-borne diseases, crop pests and non-native invasive species. However, concerns have been raised regarding the potential unintended impacts of gene-drive systems.

View Article and Find Full Text PDF

CRISPR-based active genetic elements, or gene-drives, copied via homology-directed repair (HDR) in the germline, are transmitted to progeny at super-Mendelian frequencies. Active genetic elements also can generate widespread somatic mutations, but the genetic basis for such phenotypes remains uncertain. It is generally assumed that such somatic mutations are generated by non-homologous end-joining (NHEJ), the predominant double stranded break repair pathway active in somatic cells.

View Article and Find Full Text PDF

Bacterial resistance to antibiotics has reached critical levels, skyrocketing in hospitals and the environment and posing a major threat to global public health. The complex and challenging problem of reducing antibiotic resistance (AR) requires a network of both societal and science-based solutions to preserve the most lifesaving pharmaceutical intervention known to medicine. In addition to developing new classes of antibiotics, it is essential to safeguard the clinical efficacy of existing drugs.

View Article and Find Full Text PDF

CRISPR-based gene-drive systems, which copy themselves via gene conversion mediated by the homology-directed repair (HDR) pathway, have the potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway, resistant to Cas9 cleavage, can interrupt the spread of gene-drive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences that restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles combined with recessive Mendelian culling processes.

View Article and Find Full Text PDF

Background: The mosquito Anopheles stephensi is a vector of urban malaria in Asia that recently invaded Africa. Studying the genetic basis of vectorial capacity and engineering genetic interventions are both impeded by limitations of a vector's genome assembly. The existing assemblies of An.

View Article and Find Full Text PDF

The transition of new technologies for public health from laboratory to field is accompanied by a broadening scope of engagement challenges. Recent developments of vector control strategies involving genetically engineered mosquitoes with gene drives to assist in the eradication of malaria have drawn significant attention. Notably, questions have arisen surrounding community and regulatory engagement activities and of the need for examples of models or frameworks that can be applied to guide engagement.

View Article and Find Full Text PDF

Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function.

View Article and Find Full Text PDF

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs).

View Article and Find Full Text PDF