Publications by authors named "Eszter Toth-Szeles"

A green and facile method has been developed for the preparation of immobilized gold nanoparticles (AuNPs) using agarose as a reducing and stabilizing agent. The size of the synthesized AuNPs ranges between 10 and 100 nm, and their average size can be controlled by the concentrations of the agarose and gold salt. The agarose matrix as a mild and green reaction medium can provide a good dispersion environment for forming AuNPs, and the hydrogel can be well homogenized with polyacrylic macroporous microbeads as well, which can adsorb and stabilize the particles leading to the simultaneous synthesis and immobilization of AuNPs avoiding harmful inorganic compounds or organic solvents.

View Article and Find Full Text PDF

Mycotoxins, present in a wide range of food and feed commodities, are toxic secondary metabolites produced by a number of different fungi. Certain mycotoxins do not readily degrade at high temperatures, therefore are resistant to food processing, and consequently are present in the human and animal food supply. Optical waveguide lightmode spectroscopy (OWLS) was applied for the detection of aflatoxin B1, in a competitive immunoassay format, to compare the analytical sensitivity achieved with an immunosensor design allowing signal enhancement by increasing the sensor surface through immobilization of gold nanoparticles (AuNPs) of different size and origin (obtained by chemical or biotechnological synthesis).

View Article and Find Full Text PDF

Alternative methods, including green synthetic approaches for the preparation of various types of nanoparticles are important to maintain sustainable development. Extracellular or intracellular extracts of fungi are perfect candidates for the synthesis of metal nanoparticles due to the scalability and cost efficiency of fungal growth even on industrial scale. There are several methods and techniques that use fungi-originated fractions for synthesis of gold nanoparticles.

View Article and Find Full Text PDF

The interaction of an autocatalytic reaction with a fast precipitation reaction is shown to produce a permanent precipitate pattern where the major driving force is differential diffusion. The final structure emerges from the leading transient cellular front, the cusps of which evolve into precipitate free zones. The experimental observations are reproduced by a simple model calculation based on the empirical rate-law of the reaction.

View Article and Find Full Text PDF